Solveeit Logo

Question

Question: What is the value of \(\displaystyle \lim_{x \to \infty }\left( \dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \r...

What is the value of limx(sin2xx2)\displaystyle \lim_{x \to \infty }\left( \dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \right)?

Explanation

Solution

We need to find the value of limx(sin2xx2)\displaystyle \lim_{x \to \infty }\left( \dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \right). We find the range of the functions for numerator and denominator separately. We have xR\forall x\in \mathbb{R}, 0sin2x10\le {{\sin }^{2}}x\le 1. Therefore, we get
0sin2xx21x20\le \dfrac{{{\sin }^{2}}x}{{{x}^{2}}}\le \dfrac{1}{{{x}^{2}}}. We use the limit of the function to find the limit value of the function.

Complete step by step solution:
We have to find the value of limx(sin2xx2)\displaystyle \lim_{x \to \infty }\left( \dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \right).
We have to find the range of the functions individually.
We first take the trigonometric function in the numerator.
xR\forall x\in \mathbb{R}, the range of the function f(x)=sinxf\left( x \right)=\sin x is 1sinx1-1\le \sin x\le 1.
Now we find the range of g(x)=sin2xg\left( x \right)={{\sin }^{2}}x.
xR\forall x\in \mathbb{R}, the range of the function g(x)=sin2xg\left( x \right)={{\sin }^{2}}x is 0sin2x10\le {{\sin }^{2}}x\le 1.
We divide the both sides of the inequality 0sin2x10\le {{\sin }^{2}}x\le 1 with x2{{x}^{2}}.
The function (sin2xx2)\left( \dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \right) will be defined as the value of xx \to \infty .
So, we get 0x2sin2xx21x20sin2xx21x2\dfrac{0}{{{x}^{2}}}\le \dfrac{{{\sin }^{2}}x}{{{x}^{2}}}\le \dfrac{1}{{{x}^{2}}}\Rightarrow 0\le \dfrac{{{\sin }^{2}}x}{{{x}^{2}}}\le \dfrac{1}{{{x}^{2}}}.
To find the limit value of limx(sin2xx2)\displaystyle \lim_{x \to \infty }\left( \dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \right), we need to find the limit value of the function
limx(1x2)\displaystyle \lim_{x \to \infty }\left( \dfrac{1}{{{x}^{2}}} \right).
We put the value of the variables and get limx(1x2)=1=0\displaystyle \lim_{x \to \infty }\left( \dfrac{1}{{{x}^{2}}} \right)=\dfrac{1}{\infty }=0.
Therefore, we get as xx \to \infty , the function sin2xx20\dfrac{{{\sin }^{2}}x}{{{x}^{2}}}\to 0.
Therefore, the value of limx(sin2xx2)\displaystyle \lim_{x \to \infty }\left( \dfrac{{{\sin }^{2}}x}{{{x}^{2}}} \right) is 0.

Note: We need to remember that we can’t use the limit formula of limx0(sinxx)=1\displaystyle \lim_{x \to 0}\left( \dfrac{\sin x}{x} \right)=1. That limit is for the limit of x0x \to 0. Here, the limit tends to infinity. Also, the value of the numerator being close to 0 doesn’t change the final value as xx \to \infty .