Solveeit Logo

Question

Question: What is the value of \(\cot {75^ \circ }\) ?...

What is the value of cot75\cot {75^ \circ } ?

Explanation

Solution

Here we are going to find the value of cot75\cot {75^ \circ }by using trigonometry property and also the formula.
Formula used:
We know that cotx=1tanx\cot x = \dfrac{1}{{\tan x}} and
The trigonometry identity tan(A+B)=tanAtanB1tanA.tanB\tan \left( {A + B} \right) = \dfrac{{\tan A - \tan B}}{{1 - \tan A.\tan B}}

Complete step-by-step solution:
Using the trigonometry identity that is tan(A+B)=tanAtanB1tanA.tanB\tan \left( {A + B} \right) = \dfrac{{\tan A - \tan B}}{{1 - \tan A.\tan B}}------------(1)
And we have cot75\cot {75^ \circ }and we can split the angle like this cot(30+45)\cot \left( {{{30}^ \circ } + {{45}^ \circ }} \right)
We know cotx=1tanx\cot x = \dfrac{1}{{\tan x}}so we can write the above like this cot(30+45)=1tan(30+45)\cot \left( {{{30}^ \circ } + {{45}^ \circ }} \right) = \dfrac{1}{{\tan \left( {{{30}^ \circ } + {{45}^ \circ }} \right)}}
Now we can find the value for tan(30+45)\tan \left( {{{30}^ \circ } + {{45}^ \circ }} \right)by using trigonometry identity we get,
tan(30+45)=tan30+tan451tan30.tan45\tan \left( {{{30}^ \circ } + {{45}^ \circ }} \right) = \dfrac{{\tan {{30}^ \circ } + \tan {{45}^ \circ }}}{{1 - \tan {{30}^ \circ }.\tan {{45}^ \circ }}}-------------(2)
We know the value that tan45=1\tan {45^ \circ } = 1, tan30=13\tan {30^ \circ } = \dfrac{1}{{\sqrt 3 }}
Substituting these value in equation(1) we get,
tan(75)=13+1113(1)\tan \left( {{{75}^ \circ }} \right) = \dfrac{{\dfrac{1}{{\sqrt 3 }} + 1}}{{1 - \dfrac{1}{{\sqrt 3 }}\left( 1 \right)}}
On simplifying it we get,
tan(75)=1+33313\tan \left( {{{75}^ \circ }} \right) = \dfrac{{\dfrac{{1 + \sqrt 3 }}{{\sqrt 3 }}}}{{\dfrac{{\sqrt 3 - 1}}{{\sqrt 3 }}}}
tan(75)=1+331\tan \left( {{{75}^ \circ }} \right) = \dfrac{{1 + \sqrt 3 }}{{\sqrt 3 - 1}} ----------(3)
Using the identity cotx=1tanx\cot x = \dfrac{1}{{\tan x}}we get,
cot75=1tan75\cot {75^ \circ } = \dfrac{1}{{\tan {{75}^ \circ }}}
Therefore substituting equation (3) in above equation we get,
cot75=11+331\cot {75^ \circ } = \dfrac{1}{{\dfrac{{1 + \sqrt 3 }}{{\sqrt 3 - 1}}}}
On simplifying we get,
cot75=311+3\cot {75^ \circ } = \dfrac{{\sqrt 3 - 1}}{{1 + \sqrt 3 }}
Finally we get the answer.

Note: In a right triangle, the cotangent of an angle is the length of the adjacent side divided by the length of the opposite side. In a formula, it is abbreviated to just ‘cot’ . Trigonometry values are all about the study of standard angles for a given triangle with respect to trigonometric ratios. The word ‘trigon’ means triangle and ‘ metron’ means measurement. It’s one of the major concepts and part of geometry ,where the relationship between angles and sides of a triangle is explained.
Like other trigonometric functions, the cotangent can be represented as a line segment associated with the unit circle. Obviously , since the cotangent function is the reciprocal of the tangent function , it can be expressed in terms of tangent. We can also express the cotangent function in terms of the sine and cosine.