Solveeit Logo

Question

Question: What is the value of $[(\cos3\theta + 2\cos5\theta + \cos7\theta) \div (\cos\theta + 2\cos3\theta + ...

What is the value of [(cos3θ+2cos5θ+cos7θ)÷(cosθ+2cos3θ+cos5θ)]+sin2θ.tan3θ[(\cos3\theta + 2\cos5\theta + \cos7\theta) \div (\cos\theta + 2\cos3\theta + \cos5\theta)] + \sin2\theta.\tan3\theta?

A

cos2θ\cos2\theta

B

sin2θ\sin2\theta

C

tan2θ\tan2\theta

D

cotθ.sin2θ\cot\theta.\sin2\theta

Answer

cos2θ\cos2\theta

Explanation

Solution

The problem requires simplifying a trigonometric expression using various identities.

The given expression is: E=[cos3θ+2cos5θ+cos7θcosθ+2cos3θ+cos5θ]+sin2θ.tan3θE = \left[\frac{\cos3\theta + 2\cos5\theta + \cos7\theta}{\cos\theta + 2\cos3\theta + \cos5\theta}\right] + \sin2\theta.\tan3\theta

Let's simplify the numerator of the first term, N=cos3θ+2cos5θ+cos7θN = \cos3\theta + 2\cos5\theta + \cos7\theta. We can rearrange the terms and use the sum-to-product identity cosA+cosB=2cos(A+B2)cos(AB2)\cos A + \cos B = 2\cos\left(\frac{A+B}{2}\right)\cos\left(\frac{A-B}{2}\right): N=(cos3θ+cos7θ)+2cos5θN = (\cos3\theta + \cos7\theta) + 2\cos5\theta N=2cos(3θ+7θ2)cos(7θ3θ2)+2cos5θN = 2\cos\left(\frac{3\theta+7\theta}{2}\right)\cos\left(\frac{7\theta-3\theta}{2}\right) + 2\cos5\theta N=2cos5θcos2θ+2cos5θN = 2\cos5\theta\cos2\theta + 2\cos5\theta Factor out 2cos5θ2\cos5\theta: N=2cos5θ(cos2θ+1)N = 2\cos5\theta(\cos2\theta + 1) Now, use the identity 1+cos2θ=2cos2θ1+\cos2\theta = 2\cos^2\theta: N=2cos5θ(2cos2θ)N = 2\cos5\theta(2\cos^2\theta) N=4cos5θcos2θN = 4\cos5\theta\cos^2\theta

Next, let's simplify the denominator of the first term, D=cosθ+2cos3θ+cos5θD = \cos\theta + 2\cos3\theta + \cos5\theta. Rearrange and use the sum-to-product identity: D=(cosθ+cos5θ)+2cos3θD = (\cos\theta + \cos5\theta) + 2\cos3\theta D=2cos(θ+5θ2)cos(5θθ2)+2cos3θD = 2\cos\left(\frac{\theta+5\theta}{2}\right)\cos\left(\frac{5\theta-\theta}{2}\right) + 2\cos3\theta D=2cos3θcos2θ+2cos3θD = 2\cos3\theta\cos2\theta + 2\cos3\theta Factor out 2cos3θ2\cos3\theta: D=2cos3θ(cos2θ+1)D = 2\cos3\theta(\cos2\theta + 1) Use the identity 1+cos2θ=2cos2θ1+\cos2\theta = 2\cos^2\theta: D=2cos3θ(2cos2θ)D = 2\cos3\theta(2\cos^2\theta) D=4cos3θcos2θD = 4\cos3\theta\cos^2\theta

Now, substitute the simplified numerator and denominator back into the first term of the expression: ND=4cos5θcos2θ4cos3θcos2θ\frac{N}{D} = \frac{4\cos5\theta\cos^2\theta}{4\cos3\theta\cos^2\theta} Assuming cos2θ0\cos^2\theta \neq 0, we can cancel cos2θ\cos^2\theta: ND=cos5θcos3θ\frac{N}{D} = \frac{\cos5\theta}{\cos3\theta}

Substitute this back into the original expression: E=cos5θcos3θ+sin2θ.tan3θE = \frac{\cos5\theta}{\cos3\theta} + \sin2\theta.\tan3\theta Rewrite tan3θ\tan3\theta as sin3θcos3θ\frac{\sin3\theta}{\cos3\theta}: E=cos5θcos3θ+sin2θ(sin3θcos3θ)E = \frac{\cos5\theta}{\cos3\theta} + \sin2\theta \left(\frac{\sin3\theta}{\cos3\theta}\right) Combine the terms over a common denominator cos3θ\cos3\theta: E=cos5θ+sin2θsin3θcos3θE = \frac{\cos5\theta + \sin2\theta\sin3\theta}{\cos3\theta}

Now, use the cosine addition formula cos(A+B)=cosAcosBsinAsinB\cos(A+B) = \cos A\cos B - \sin A\sin B. Let A=2θA=2\theta and B=3θB=3\theta, then cos(2θ+3θ)=cos5θ\cos(2\theta+3\theta) = \cos5\theta: cos5θ=cos2θcos3θsin2θsin3θ\cos5\theta = \cos2\theta\cos3\theta - \sin2\theta\sin3\theta Substitute this expression for cos5θ\cos5\theta into the numerator of EE: Numerator =(cos2θcos3θsin2θsin3θ)+sin2θsin3θ= (\cos2\theta\cos3\theta - \sin2\theta\sin3\theta) + \sin2\theta\sin3\theta Numerator =cos2θcos3θ= \cos2\theta\cos3\theta

So, the expression EE becomes: E=cos2θcos3θcos3θE = \frac{\cos2\theta\cos3\theta}{\cos3\theta} Assuming cos3θ0\cos3\theta \neq 0, we can cancel cos3θ\cos3\theta: E=cos2θE = \cos2\theta

The value of the expression is cos2θ\cos2\theta.