Solveeit Logo

Question

Question: What is the value of \[\cos x – \sin x =\] ?...

What is the value of cosxsinx=\cos x – \sin x = ?

Explanation

Solution

In this question, we need to find the value of cosxsinx\cos x-\sin x . The basic trigonometric functions are sine , cosine and tangent. Sine is nothing but a ratio of the opposite side of a right angle to the hypotenuse of the right angle. Similarly, cosine is nothing but a ratio of the adjacent side of a right angle to the hypotenuse of the right angle . Here we need to find the value of cosxsinx\cos x-\sin x . With the help of the Trigonometric functions , we can find the value of cosxsinx\cos x-\sin x
Formula used :
1. sinx=cos(π2x)\sin x = cos\left( \dfrac{\pi}{2} – x \right)
2. cosacosb=2sin(a+b2)sin(ab2)cosa – cosb = - 2sin\left( \dfrac{a + b}{2} \right)\sin\left( \dfrac{a – b}{2} \right)
Trigonometry table :

Angle0o0^{o}30o30^{o}45o45^{o}60o60^{o}90o90^{o}
Sine0012\dfrac{1}{2}12\dfrac{1}{\sqrt{2}}32\dfrac{\sqrt{3}}{2}11

Complete step by step solution:
Given,
cosxsinx\cos x – \sin x
We need to find the value of cosxsinx\cos x – \sin x
By using the identity, sinx=cos(π2x)\sin x = cos(\dfrac{\pi}{2} – x)
We get ,
cosxsinx=cosxcos(π2x)\cos x – \sin x = \cos x - \cos\left( \dfrac{\pi}{2} – x \right)
From the trigonometry formula,
cosacosb=2sin(a+b2)sin(ab2)cosa – cosb = - 2sin\left( \dfrac{a + b}{2} \right)\sin\left( \dfrac{a – b}{2} \right)
From comparing the expression cosxcos(π2x)\cos x - \cos\left( \dfrac{\pi}{2} – x \right) with the trigonometry formula, a=xa = x and b=(π2x) b = \left( \dfrac{\pi}{2} – x \right)\
By substituting aa and bb in the formula,
We get,
2sin(x+(π2)x2)sin(x((π2)x)2) \Rightarrow- 2sin\left( \dfrac{x + \left( \dfrac{\pi}{2} \right) – x}{2} \right)\sin\left( \dfrac{x - \left( \left( \dfrac{\pi}{2} \right) – x \right)}{2} \right)\
By simplifying the term
(x+(π2)x2)\left( \dfrac{x + \left( \dfrac{\pi}{2} \right) – x}{2} \right)
We get, π4\dfrac{\pi}{4}
Also another term,
(x((π2)x)2) \left( \dfrac{x - \left( \left( \dfrac{\pi}{2} \right) – x \right)}{2} \right)\
=(x(π2x2)2)= \left( \dfrac{x - \left( \dfrac{\pi – 2x}{2} \right)}{2} \right)
On solving,
We get,
=(2x(π2x)22)= \left( \dfrac{\dfrac{2x - \left( \pi – 2x \right)}{2}}{2} \right)
=(2x(π2x)2×2)= \left( \dfrac{2x - \left( \pi – 2x \right)}{2 \times 2} \right)
By removing the parentheses,
We get,
=2xπ+2x4=\dfrac{2x - \pi + 2x}{4}
On further simplifying,
We get
=4xπ4=\dfrac{4x - \pi}{4}
On dividing,
We get,
=x(π4)= x - \left( \dfrac{\pi}{4} \right)
Thus by substituting both the terms,
We get,
=2sin(π4)sin(xπ4)= - 2sin\left( \dfrac{\pi}{4} \right)\sin\left( x - \dfrac{\pi}{4} \right)
From the trigonometric table, the value of sin(π4)\sin\left( \dfrac{\pi}{4} \right) is 12\dfrac{1}{\sqrt{2}}
By substituting the value ,
We get ,
=2×12sin(xπ4)= - 2 \times \dfrac{1}{\sqrt{2}}\sin\left( x - \dfrac{\pi}{4} \right)
On simplifying,
We get,
=2sin(xπ4)= - \sqrt{2}\sin\left( x - \dfrac{\pi}{4} \right)
Thus we get,
cosxsinx=2sin(xπ4)\cos x – \sin x = - \sqrt{2}\sin\left( x - \dfrac{\pi}{4} \right)
Final answer :
The value of cosxsinx=2sin(xπ4)\cos x – \sin x = - \sqrt{2}\sin\left( x - \dfrac{\pi}{4} \right)

Note: The concept used in this problem is trigonometric identities and ratios. Trigonometric identities are nothing but they involve trigonometric functions including variables and constants. The common technique used in this problem is the use of trigonometric functions . Trigonometric functions are also known as circular functions or geometrical functions.