Solveeit Logo

Question

Question: What is the value of \(\cos \left( \dfrac{\pi }{8} \right)\)?...

What is the value of cos(π8)\cos \left( \dfrac{\pi }{8} \right)?

Explanation

Solution

We first find the value cos(π4)=12\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}. We use cosα=2cos2α21\cos \alpha =2{{\cos }^{2}}\dfrac{\alpha }{2}-1 for the replacement of the value. We get 2cos2π81=122{{\cos }^{2}}\dfrac{\pi }{8}-1=\dfrac{1}{\sqrt{2}}. We solve the quadratic to find the solution of cos(π8)\cos \left( \dfrac{\pi }{8} \right). We only take the positive value as it is in its primary domain.

Complete step by step solution:
We need to find the value of cos(π8)\cos \left( \dfrac{\pi }{8} \right). We know that cos(π4)=12\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}.
We can express it as cos(π4)=cos(2×π8)=12\cos \left( \dfrac{\pi }{4} \right)=\cos \left( 2\times \dfrac{\pi }{8} \right)=\dfrac{1}{\sqrt{2}}.
We know the multiple angle formula of cosα=2cos2α21\cos \alpha =2{{\cos }^{2}}\dfrac{\alpha }{2}-1.
cos(π4)=cos(2×π8)=2cos2π81=12\cos \left( \dfrac{\pi }{4} \right)=\cos \left( 2\times \dfrac{\pi }{8} \right)=2{{\cos }^{2}}\dfrac{\pi }{8}-1=\dfrac{1}{\sqrt{2}}. The simplified form is 2cos2π81=122{{\cos }^{2}}\dfrac{\pi }{8}-1=\dfrac{1}{\sqrt{2}}.

& 2{{\cos }^{2}}\dfrac{\pi }{8}-1=\dfrac{1}{\sqrt{2}} \\\ & \Rightarrow 2{{\cos }^{2}}\dfrac{\pi }{8}=1+\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}+1}{\sqrt{2}} \\\ & \Rightarrow {{\cos }^{2}}\dfrac{\pi }{8}=\dfrac{\sqrt{2}+1}{2\sqrt{2}}=\dfrac{2+\sqrt{2}}{4} \\\ & \Rightarrow \cos \dfrac{\pi }{8}=\pm \sqrt{\dfrac{2+\sqrt{2}}{4}}=\pm \dfrac{\sqrt{2+\sqrt{2}}}{2} \\\ \end{aligned}$$ Now the value of $\cos \left( \dfrac{\pi }{8} \right)$ is positive and that’s why $$\cos \dfrac{\pi }{8}=\dfrac{\sqrt{2+\sqrt{2}}}{2}$$ **Note:** Although for elementary knowledge the principal domain is enough to solve the problem. But if mentioned to find the general solution then the domain changes to $-\infty \le x\le \infty $. In that case we have to use the formula $x=n\pi \pm a$ for $\cos \left( x \right)=\cos a$ where $-\dfrac{\pi }{2}\le a\le \dfrac{\pi }{2}$.