Solveeit Logo

Question

Question: What is the value of \[\cos \left( A+B\right) \cdot \sec \left( A-B\right) \], If \[\cot A\cdot \cot...

What is the value of cos(A+B)sec(AB)\cos \left( A+B\right) \cdot \sec \left( A-B\right) , If cotAcotB=2\cot A\cdot \cot B=2?
A) 13\dfrac{1}{3}
B) 23\dfrac{2}{3}
C) 1
D) -1

Explanation

Solution

Hint: In this question it is given that if cotAcotB=2\cot A\cdot \cot B=2, then we have to find the value of cos(A+B)sec(AB)\cos \left( A+B\right) \cdot \sec \left( A-B\right) . So to find the solution we first need to transform the sec(AB)\sec \left( A-B\right) into 1cos(AB)\dfrac{1}{\cos \left( A-B\right) } and after that we are going to use the formula-
cos(A+B)=cosAcosBsinAsinB\cos \left( A+B\right) =\cos A\cos B-\sin A\sin B........(1)
cos(AB)=cosAcosB+sinAsinB\cos \left( A-B\right) =\cos A\cos B+\sin A\sin B........(2)
Complete step-by-step solution:
Given,
cos(A+B)sec(AB)\cos \left( A+B\right) \cdot \sec \left( A-B\right)
=cos(A+B)1cos(AB)=\cos \left( A+B\right) \cdot \dfrac{1}{\cos \left( A-B\right) }[ since, secθ=1cosθ\sec \theta =\dfrac{1}{\cos \theta }]
=cos(A+B)cos(AB)=\dfrac{\cos \left( A+B\right) }{\cos \left( A-B\right) }
=cosAcosBsinAsinBcosAcosB+sinAsinB=\dfrac{\cos A\cos B-\sin A\sin B}{\cos A\cos B+\sin A\sin B}[by using the formula (1) and (2)]
Now dividing the numerator and denominator by sinAsinB\sin A\cdot \sin B, we get,
cosAcosBsinAsinBsinAsinBcosAcosB+sinAsinBsinAsinB\dfrac{\dfrac{\cos A\cos B-\sin A\sin B}{\sin A\sin B} }{\dfrac{\cos A\cos B+\sin A\sin B}{\sin A\sin B} }
=cosAcosBsinAsinBsinAsinBsinAsinBcosAcosBsinAsinB+sinAsinBsinAsinB=\dfrac{\dfrac{\cos A\cos B}{\sin A\sin B} -\dfrac{\sin A\sin B}{\sin A\sin B} }{\dfrac{\cos A\cos B}{\sin A\sin B} +\dfrac{\sin A\sin B}{\sin A\sin B} }
=cosAsinAcosBsinB1cosAsinAcosBsinB+1=\dfrac{\dfrac{\cos A}{\sin A} \cdot \dfrac{\cos B}{\sin B} -1}{\dfrac{\cos A}{\sin A} \cdot \dfrac{\cos B}{\sin B} +1}
=cotAcotB1cotAcotB+1=\dfrac{\cot A\cdot \cot B-1}{\cot A\cdot \cot B+1} [cosθsinθ=cotθ\because \dfrac{\cos \theta }{\sin \theta } =\cot \theta]
=212+1=\dfrac{2-1}{2+1} [ since as we know that cotAcotB=2\cot A\cdot \cot B=2]
=13=\dfrac{1}{3}
Hence, the correct option is option A.
Note: While simplifying a big expression, try to express it in terms of one or two basic trigonometric functions, like we have transformed the above expression in terms of cosinecosine, also try to find an order in the problem to apply trigonometric identities, properties and transformations.