Solveeit Logo

Question

Question: What is the value of \(({\cos ^2}{67^ \circ }{\text{ - }}{\sin ^2}{23^ \circ })?\)...

What is the value of (cos267 - sin223)?({\cos ^2}{67^ \circ }{\text{ - }}{\sin ^2}{23^ \circ })?

Explanation

Solution

Hint: Here convert cosθ\cos \theta into sinθsin \theta by using the trigonometric relation cos2(90 - θ) = sin2θ{\cos ^2}({90^ \circ }{\text{ - }}\theta ){\text{ = }}{\sin ^2}\theta .

Complete step by step solution:

Given equation is (cos267 - sin223)({\cos ^2}{67^ \circ }{\text{ - }}{\sin ^2}{23^ \circ })

Now, we can write this equation in this form i.e.

(cos267 - sin223)=cos2(90 - 23) - sin223({\cos ^2}{67^ \circ }{\text{ - }}{\sin ^2}{23^ \circ }) = {\cos ^2}({90^ \circ }{\text{ - 2}}{{\text{3}}^ \circ }{\text{) - }}{\sin ^2}{23^ \circ } ......................................(1)

We know that

cos2(90 - θ) = sin2θ{\cos ^2}({90^ \circ }{\text{ - }}\theta ){\text{ = }}{\sin ^2}\theta

Now using this concept we can write the equation (1) in this form i.e.

(cos267 - sin223) = sin223 - sin223({\cos ^2}{67^ \circ }{\text{ - }}{\sin ^2}{23^ \circ }){\text{ = }}{\sin ^2}{23^ \circ }{\text{ - }}{\sin ^2}{23^ \circ }

(cos267 - sin223)= 0({\cos ^2}{67^ \circ }{\text{ - }}{\sin ^2}{23^ \circ }) = {\text{ 0}}

Note: - These types of problems can be solved by converting either cosθ\cos \theta into sinθ\sin \theta or sinθsin \theta into cosθ\cos \theta. Here we have converted cosθ\cos \theta into sinθ\sin \theta in the similar way we can do it for other questions as well.