Solveeit Logo

Question

Question: What is the Taylor series expansion of \(f\left( x \right) = \dfrac{1}{{{x^2}}}\) at \(a = 1\)?...

What is the Taylor series expansion of f(x)=1x2f\left( x \right) = \dfrac{1}{{{x^2}}} at a=1a = 1?

Explanation

Solution

Here in this question, we have to find the Taylor’s series expansion of a given function. By using the formula of Taylor's series f(x)=f0(a)0!(xa)0+f(a)1!(xa)1+f(a)2!(xa)2+f(a)3!(xa)3+f(a)4!(xa)4...f(x) = \dfrac{{{f^0}(a)}}{{0!}}{(x - a)^0} + \dfrac{{f'(a)}}{{1!}}{(x - a)^1} + \dfrac{{f''(a)}}{{2!}}{(x - a)^2} + \dfrac{{f'''(a)}}{{3!}}{(x - a)^3} + \dfrac{{f''''(a)}}{{4!}}{(x - a)^4}... Substituting the value of a to the formula then simplifies by using the standard differentiated formula to get the required solution.

Complete step by step answer:
We have to determine the nth Taylor’s series by using the Taylor’s series expansion. Here the function is f(x)=1x2f\left( x \right) = \dfrac{1}{{{x^2}}}. The formula for the Taylor’s series expansion is given by f(x)=f(a)+f(a)(xa)+f(a)2!(xa)2+f(a)3!(xa)3+...f(x) = f(a) + f'(a)(x - a) + \dfrac{{f''(a)}}{{2!}}{(x - a)^2} + \dfrac{{f'''(a)}}{{3!}}{(x - a)^3} + ... the value of a is 1. The general form of Taylor’s series expansion is written as,
f(x)=n=0f(n)(a)n!(xa)nf(x) = \sum\limits_{n = 0}^\infty {\dfrac{{{f^{(n)}}(a)}}{{n!}}} {(x - a)^n}

Now consider the function f(x)=1x2f\left( x \right) = \dfrac{1}{{{x^2}}}. Let we find the derivatives of the function
f0(x)=f(x)=1x2=x2{f^0}\left( x \right) = f\left( x \right) = \dfrac{1}{{{x^2}}} = {x^{ - 2}}
The first derivative of the function is f(x)=2x3f'(x) = - \dfrac{2}{{{x^3}}}, The first derivative can be written as f(x)=2x3f'(x) = - 2{x^{ - 3}}
The second derivative of the function is f(x)=6x4=6x4f''(x) = \dfrac{6}{{{x^4}}} = 6{x^{ - 4}},
The third derivative of the function is f(x)=24x5=24x5f'''(x) = - \dfrac{{24}}{{{x^5}}} = - 24{x^{ - 5}},
The fourth derivative of the function is f(x)=120x6=120x6f''''(x) = \dfrac{{120}}{{{x^6}}} = 120{x^{ - 6}},
Likewise the nth{n^{th}} derivative is given by
f(n)(x)=(1)n1(n1)!x(n+2){f^{(n)}}(x) = {( - 1)^{n - 1}}(n - 1)!{x^{ - \left( {n + 2} \right)}}

Let us consider the Taylor series
f(x)=n=0f(n)(a)n!(xa)n=f0(a)0!(xa)0+f(a)1!(xa)1+f(a)2!(xa)2+f(a)3!(xa)3+f(a)4!(xa)4...f(x) = \sum\limits_{n = 0}^\infty {\dfrac{{{f^{(n)}}(a)}}{{n!}}} {(x - a)^n} = \dfrac{{{f^0}(a)}}{{0!}}{(x - a)^0} + \dfrac{{f'(a)}}{{1!}}{(x - a)^1} + \dfrac{{f''(a)}}{{2!}}{(x - a)^2} + \dfrac{{f'''(a)}}{{3!}}{(x - a)^3} + \dfrac{{f''''(a)}}{{4!}}{(x - a)^4}...
-------(1)
aa is a constant we choose. Given a=1a = 1 for simplicity. So, xax \to a, except for the term (xa)n{\left( {x - a} \right)^n}, which remains as (x1)n{\left( {x - 1} \right)^n}.
The Taylor series or equation (1) becomes
f(1)=f0(1)0!(x1)0+f(1)1!(x1)1+f(1)2!(x1)2+f(1)3!(x1)3+f(a)4!(x1)4...f(1) = \dfrac{{{f^0}(1)}}{{0!}}{(x - 1)^0} + \dfrac{{f'(1)}}{{1!}}{(x - 1)^1} + \dfrac{{f''(1)}}{{2!}}{(x - 1)^2} + \dfrac{{f'''(1)}}{{3!}}{(x - 1)^3} + \dfrac{{f''''(a)}}{{4!}}{(x - 1)^4}...

Now substitute the values of derivatives.
f(1)=1121(1)+(213)1(x1)+(614)2(x1)2+(2415)6(x1)3+(12016)24(x1)4...f(1) = \dfrac{{\dfrac{1}{{{1^2}}}}}{1}(1) + \dfrac{{\left( { - \dfrac{2}{{{1^3}}}} \right)}}{1}(x - 1) + \dfrac{{\left( {\dfrac{6}{{{1^4}}}} \right)}}{2}{(x - 1)^2} + \dfrac{{\left( { - \dfrac{{24}}{{{1^5}}}} \right)}}{6}{(x - 1)^3} + \dfrac{{\left( {\dfrac{{120}}{{{1^6}}}} \right)}}{{24}}{(x - 1)^4}...
On simplification, we get
f(1)=1+(2)(x1)+62(x1)2+246(x1)3+12024(x1)4...f(1) = 1 + \left( { - 2} \right)(x - 1) + \dfrac{6}{2}{(x - 1)^2} + \dfrac{{ - 24}}{6}{(x - 1)^3} + \dfrac{{120}}{{24}}{(x - 1)^4}...
f(1)=12(x1)+3(x1)24(x1)3+5(x1)4...\therefore \,\,\,f(1) = 1 - 2(x - 1) + 3{(x - 1)^2} - 4{(x - 1)^3} + 5{(x - 1)^4}...

Hence, the Taylor series expansion of f(x)=1x2f\left( x \right) = \dfrac{1}{{{x^2}}} at a=1a = 1 is 12(x1)+3(x1)24(x1)3+5(x1)4...1 - 2(x - 1) + 3{(x - 1)^2} - 4{(x - 1)^3} + 5{(x - 1)^4}...

Note: In Taylor’s series expansion we have the derivatives, so we have to apply the differentiation to the function. If the function is a logarithmic function then we use standard differentiation formula and then we determine the solution. While solving the above function we use simple arithmetic operations.