Solveeit Logo

Question

Question: What is the solubility (in M) of \( PbC{l_2} \) in a \( 0.15{\text{ M}} \) solution of \( HCl \) ? T...

What is the solubility (in M) of PbCl2PbC{l_2} in a 0.15 M0.15{\text{ M}} solution of HClHCl ? The Ksp{K_{sp}} of PbCl2PbC{l_2} is 1.6 × 1051.6{\text{ }} \times {\text{ 1}}{{\text{0}}^{ - 5}} .

Explanation

Solution

Here we have to find the solubility of PbCl2PbC{l_2} in a 0.15 M0.15{\text{ M}} solution of HClHCl . Initially we have chlorine ions from HClHCl . Thus we will find the total concentration of chlorine atoms at equilibrium position. Then with the help of Ksp{K_{sp}} of PbCl2PbC{l_2} we can easily find the solubility of PbCl2PbC{l_2} .

Complete answer:
We are given initially with the concentration of HClHCl as 0.15 M0.15{\text{ M}} . It can be represented as:
HCl  H+ + ClHCl{\text{ }} \to {\text{ }}{H^ + }{\text{ }} + {\text{ }}C{l^ - }
The concentration of hydrochloric acid will be equal to the concentration of hydrogen and chlorine ions. Therefore we can say that initial concentration of chlorine will be:
[HCl] = [H+] = [Cl] = 0.15 M\left[ {HCl} \right]{\text{ = }}\left[ {{H^ + }} \right]{\text{ = }}\left[ {C{l^ - }} \right]{\text{ = 0}}{\text{.15 M}}
Now when we add PbCl2PbC{l_2} it will be dissociated as:
PbCl2(s) Pb2+(aq.) + 2Cl(aq.)PbC{l_2}{\text{(s) }} \rightleftharpoons P{b^{2 + }}(aq.){\text{ }} + {\text{ }}2C{l^ - }(aq.)
Since lead chloride is in solid state, therefore Ksp{K_{sp}} for above reaction can be written as:
Ksp = [Pb2+] [Cl]2\Rightarrow {K_{sp}}{\text{ = }}\left[ {P{b^{2 + }}} \right]{\text{ }}{\left[ {C{l^ - }} \right]^2}
Let say ss be the solubility of the PbCl2PbC{l_2} then at equilibrium it can be represented as:

Time[PbCl2]\left[ {PbC{l_2}} \right][Pb2+]\left[ {P{b^{2 + }}} \right]2[Cl]2\left[ {C{l^ - }} \right]
t=0t = 011000.150.15
t=teq.t = {t_{eq.}}1s1 - sss0.15 + 2s0.15{\text{ }} + {\text{ }}2s

The Ksp{K_{sp}} for above reaction will be :
Ksp = [s] [0.15+2s]2\Rightarrow {K_{sp}}{\text{ = }}\left[ s \right]{\text{ }}{\left[ {0.15 + 2s} \right]^2}
Let us assume that 2s0.152s \ll 0.15 then it can be reduced as,
 0.15 + 2s  0.15\Rightarrow {\text{ }}0.15{\text{ }} + {\text{ }}2s{\text{ }} \approx {\text{ }}0.15
Thus the equation reduced as:
Ksp = [s] [0.15]2\Rightarrow {K_{sp}}{\text{ = }}\left[ s \right]{\text{ }}{\left[ {0.15} \right]^2}
[s] = Ksp[0.15]2\Rightarrow \left[ s \right]{\text{ = }}\dfrac{{{K_{sp}}}}{{{{\left[ {0.15} \right]}^2}}}
On substituting the values we get the result as,
[s] = 1.6 × 1050.15 × 0.15\Rightarrow \left[ s \right]{\text{ = }}\dfrac{{1.6{\text{ }} \times {\text{ 1}}{{\text{0}}^{ - 5}}}}{{0.15{\text{ }} \times {\text{ 0}}{\text{.15}}}}
[s] = 7.11 × 104\Rightarrow \left[ s \right]{\text{ = 7}}{\text{.11 }} \times {\text{ 1}}{{\text{0}}^{ - 4}}
Thus the solubility of PbCl2PbC{l_2} is 7.11 × 104 M{\text{7}}{\text{.11 }} \times {\text{ 1}}{{\text{0}}^{ - 4}}{\text{ M}} . Thus we can say that the condition 2s0.152s \ll 0.15 holds true.

Note:
It must be noted that when lead chloride is being added to a solution of hydrochloric acid, the chlorine s atoms are initially present inside the solution. Therefore the initial concentration of chlorine atoms is 0.15 M0.15{\text{ M}} . Also for finding the solubility product the concentration of solid is not included because solid substance is not soluble. We have assumed 2s0.152s \ll 0.15 to make our calculations easier. If we do not make this assumption then our calculations will be lengthy.