Question
Question: What is the slope and intercept of \[3x + y = 5\]?...
What is the slope and intercept of 3x+y=5?
Solution
Let m be the slope of a line and c its intercept on y-axis. Then the equation of this straight line is written as y=mx+c and this form is known as slope intercept form. So by comparing the given expression with slope intercept form we can easily find the slope and intercept.
Formula used:
Slope intercept form (standard form of equation of a straight line)
y=mx+c; In which m is the slope of line and c is the intercept on y-axis
Complete step-by-step solution:
Step 1: Conversion of given expression (3x+y=5) into slope intercept form
We know that slope intercept form is given by
y=mx+c...........................Equation-1
Where m is the slope and c is the intercept on y-axis
Now by rearranging terms we get
3x+y=5
−y=3x−5
Step 2: Multiplying left hand side and right hand side with −1, we get
−y=3x−5
(−1)×(−y)=(−1)×(3x−5)
Multiplying (−1) with (−y), we get
y=(−1)×(3x−5)
Multiplying (−1)with(3x−5), we get
y=−3x+5..............................Equation-2
Step 3: comparing equation-1 and equation-2
Now we converted equation-2 in slope intercept form i.e. y=mx+c
After comparing both equations with each other we get,
m=−3& c=5
Hence, slope is equal to −3 and intercept on y-axis is equal to 5
Additional information: We may also have an equation in general form, ax+by+c=0 which also represents a straight line.
- Slope of this line = - \dfrac{a}{b}$$$$ = −coeff.of(y)coeff.of(x)
- Intercept by this line on x-axis=−ac and intercept by this line on y-axis=−bc
Note: Here we should have knowledge of few equations following as:
Equation of a line parallel to x-axis at a distance ais y=aor y=−a
Equation of x-axis is y=0
Equation of line parallel to y-axis at a distance bis x=bor x=−b
Equation of y-axis is x=0