Solveeit Logo

Question

Question: what is the ratio of the mean speed of \(\text{ }{{\text{O}}_{\text{3}}}\text{ }\)molecules to the R...

what is the ratio of the mean speed of  O3 \text{ }{{\text{O}}_{\text{3}}}\text{ }molecules to the RMS speed of a  O2 \text{ }{{\text{O}}_{2}}\text{ }molecule at the same T?
A)  (3 !!π!! 7)1/2 \text{ }{{\left( \dfrac{3\text{ }\\!\\!\pi\\!\\!\text{ }}{7} \right)}^{{\scriptstyle{}^{1}/{}_{2}}}}\text{ }
B)  (169 !!π!! )1/2 \text{ }{{\left( \dfrac{16}{9\text{ }\\!\\!\pi\\!\\!\text{ }} \right)}^{{\scriptstyle{}^{1}/{}_{2}}}}\text{ }
C)  (3 !!π!! )1/2 \text{ }{{\left( 3\text{ }\\!\\!\pi\\!\\!\text{ } \right)}^{{\scriptstyle{}^{1}/{}_{2}}}}\text{ }
D)  (!!π!! 9)1/2 \text{ }{{\left( \dfrac{\text{4 }\\!\\!\pi\\!\\!\text{ }}{9} \right)}^{{\scriptstyle{}^{1}/{}_{2}}}}\text{ }

Explanation

Solution

The mean square speed of the gas is given as,  mean speed = 8RT !!π!! M \text{ mean speed = }\sqrt{\dfrac{\text{8RT}}{\text{ }\\!\\!\pi\\!\\!\text{ M}}}\text{ }and the root mean square (RMS) speed of the gas molecules is equal to the average speed of particles. It is given as,  rms = 3RTM \text{ rms = }\sqrt{\dfrac{\text{3RT}}{\text{M}}}\text{ }.where, R is gas constant, T is the absolute temperature and M is the molar mass of molecules.

Complete step by step solution:
We know that the mean speed is an average of the speed particles. It is a square root of the average velocity of the molecules in a gas.
The root mean square speed is given as,
 mean speed = 8RT !!π!! M \text{ mean speed = }\sqrt{\dfrac{\text{8RT}}{\text{ }\\!\\!\pi\\!\\!\text{ M}}}\text{ }
Where R is gas constant, T is the absolute temperature and M is the molar mass of molecules.
The root mean square (RMS) speed is used to measure the average speed of particles in a gas. Mathematically it is represented as follows
 rms = 3RTM \text{ rms = }\sqrt{\dfrac{\text{3RT}}{\text{M}}}\text{ }
Where R is gas constant, T is the absolute temperature and M is the molar mass of molecules.
Let’s first calculate the molecular weight of ozone  O3 \text{ }{{\text{O}}_{\text{3}}}\text{ } and oxygen gas  O2 \text{ }{{\text{O}}_{2}}\text{ }.molecular weight  O3 \text{ }{{\text{O}}_{\text{3}}}\text{ }is:
 MW of O3 = 3×(16) = 48 \text{ MW of }{{\text{O}}_{\text{3}}}\text{ }=\text{ 3}\times \left( 16 \right)\text{ = 48 }
The molecular weight of oxygen gas  O2 \text{ }{{\text{O}}_{2}}\text{ }is:
 MW of O2 = 2×(16) = 32 \text{ MW of }{{\text{O}}_{2}}\text{ }=\text{ 2}\times \left( 16 \right)\text{ = 32 }
The mean speed (  Vmean \text{ }{{\text{V}}_{\text{mean}}}\text{ }) for the ozone  O3 \text{ }{{\text{O}}_{\text{3}}}\text{ }molecule is written as,
 mean speed of O3(Vmean)8RT !!π!! M = 8RT !!π!! ×48 \text{ mean speed of }{{\text{O}}_{\text{3}}}\left( {{\text{V}}_{\text{mean}}} \right)\text{= }\sqrt{\dfrac{\text{8RT}}{\text{ }\\!\\!\pi\\!\\!\text{ M}}}\text{ = }\sqrt{\dfrac{\text{8RT}}{\text{ }\\!\\!\pi\\!\\!\text{ }\times \text{48}}}\text{ } (1)
Let’s this as an equation (1) .now the root mean square or RMS speed ( Vrms \text{ }{{\text{V}}_{\text{rms}}}\text{ }) for oxygen gas is written as,
 rms speed of O2 molecule (Vrms)3RTM =3RT32  \text{ rms speed of }{{\text{O}}_{\text{2}}}\text{ molecule }\left( {{\text{V}}_{\text{rms}}} \right)\text{= }\sqrt{\dfrac{\text{3RT}}{\text{M}}}\text{ =}\sqrt{\dfrac{\text{3RT}}{32}\text{ }}\text{ } (2)
We are interested to determine the ratio of the mean speed of a  O3 \text{ }{{\text{O}}_{\text{3}}}\text{ }molecule to the RMS speed of the oxygen gas. Let’s divide equation (1) by equation (2).On dividing we have,
 mean speed of O3rms speed of O2 =  Vmean  Vrms  = 8RT !!π!! !!×!! 483RT32   Vmean  Vrms  = 8RT !!π!! !!×!! 48 × 323RT  Vmean  Vrms  = 169 !!π!!   \begin{aligned} & \text{ }\dfrac{\text{mean speed of }{{\text{O}}_{\text{3}}}}{\text{rms speed of }{{\text{O}}_{\text{2}}}}\text{ = }\dfrac{\text{ }{{\text{V}}_{\text{mean}}}\text{ }}{\text{ }{{\text{V}}_{\text{rms}}}\text{ }}\text{ = }\dfrac{\sqrt{\dfrac{\text{8RT}}{\text{ }\\!\\!\pi\\!\\!\text{ }\\!\\!\times\\!\\!\text{ 48}}}}{\sqrt{\dfrac{\text{3RT}}{\text{32}}\text{ }}} \\\ & \Rightarrow \dfrac{\text{ }{{\text{V}}_{\text{mean}}}\text{ }}{\text{ }{{\text{V}}_{\text{rms}}}\text{ }}\text{ = }\sqrt{\dfrac{\text{8RT}}{\text{ }\\!\\!\pi\\!\\!\text{ }\\!\\!\times\\!\\!\text{ 48}}}\text{ }\times \text{ }\sqrt{\dfrac{32}{\text{3RT}}} \\\ & \Rightarrow \dfrac{\text{ }{{\text{V}}_{\text{mean}}}\text{ }}{\text{ }{{\text{V}}_{\text{rms}}}\text{ }}\text{ = }\sqrt{\dfrac{16}{9\text{ }\\!\\!\pi\\!\\!\text{ }}}\text{ } \\\ \end{aligned}
Thus the ratio of the mean speed of ozone gas and to the root mean square speed of oxygen gas is equal to, 169 !!π!!  \sqrt{\dfrac{16}{9\text{ }\\!\\!\pi\\!\\!\text{ }}}\text{ }or  (169 !!π!! )1/2 \text{ }{{\left( \dfrac{16}{9\text{ }\\!\\!\pi\\!\\!\text{ }} \right)}^{{\scriptstyle{}^{1}/{}_{2}}}}\text{ }.

Hence, (B) is the correct option.

Note: Note that, for a particular gas the ratio of the speed of rms to the average speed is equal to,
 VrmsVmean3RTM:8RT !!π!! M = 3:8 !!π!!  = 1.181 : 1 \text{ }\dfrac{{{\text{V}}_{\text{rms}}}}{{{\text{V}}_{\text{mean}}}}\text{= }\sqrt{\dfrac{\text{3RT}}{\text{M}}}\text{:}\sqrt{\dfrac{\text{8RT}}{\text{ }\\!\\!\pi\\!\\!\text{ M}}}\text{ = }\sqrt{\text{3}}\text{:}\sqrt{\dfrac{\text{8}}{\text{ }\\!\\!\pi\\!\\!\text{ }}}\text{ = 1}\text{.181 : 1 }
This relation is applicable for the same gas only.