Solveeit Logo

Question

Question: What is the radius of the imaginary concentric sphere that divides the electrostatic field of a meta...

What is the radius of the imaginary concentric sphere that divides the electrostatic field of a metal sphere of a radius 20 cm & a charge of 8 mC in two regions of identical energy –

A

30 cm

B

40 cm

C

60 cm

D

80 cm

Answer

40 cm

Explanation

Solution

Energy between shell 1 & 2 = energy behind shell 2.

Energy between

shell 1 & 2 = r=ar=b120[KQr2]2×4πr2dr\int_{r = a}^{r = b}{\frac{1}{2} \in_{0}\left\lbrack \frac{KQ}{r^{2}} \right\rbrack^{2} \times 4\pi r^{2}dr}

= 0K2Q22×4π\frac{\in_{0}K^{2}Q^{2}}{2} \times 4\pi [1r]ab\left\lbrack - \frac{1}{r} \right\rbrack_{a}^{b}= 0K2Q22\frac{\in_{0}K^{2}Q^{2}}{2} [1a1b]\left\lbrack \frac{1}{a} - \frac{1}{b} \right\rbrack

Energy beyond shell 2 = r=br=120[KQr2]2\int_{r = b}^{r = \infty}{\frac{1}{2} \in_{0}}\left\lbrack \frac{KQ}{r^{2}} \right\rbrack^{2}× 4pr2dr

= 120K2Q2\frac{1}{2} \in_{0}K^{2}Q^{2}× 4p [1b]\left\lbrack \frac{1}{b} \right\rbrack

\ 120K2Q2\frac{1}{2} \in_{0}K^{2}Q^{2}× 4p [1a1b]\left\lbrack \frac{1}{a} - \frac{1}{b} \right\rbrack

= 120K2Q2\frac{1}{2} \in_{0}K^{2}Q^{2}× 4p [1b]\left\lbrack \frac{1}{b} \right\rbrack

1a=2b\frac{1}{a} = \frac{2}{b}

b = 2a

a = 20 cm

b = 40 cm