Solveeit Logo

Question

Question: What is the quadratic regression equation for the data set? x| y ---|--- 3| 3.45 5| 6.9 ...

What is the quadratic regression equation for the data set?

xy
33.45
56.9
68.79
812.91
1017.48
1222.49
1530.85

A. y^=0.056x2+1.278x\widehat{y}=0.056{{x}^{2}}+1.278x
B. y^=0.056x21.278x0.886\widehat{y}=0.056{{x}^{2}}-1.278x-0.886
C. y^=0.056x2+1.278\widehat{y}=0.056{{x}^{2}}+1.278
D. y^=0.056x2+1.278x0.886\widehat{y}=0.056{{x}^{2}}+1.278x-0.886

Explanation

Solution

We need to solve the following set of equations for the values of a, b and c which will determine the coefficients of the quadratic equation. These equations are given as follows:
axi4+bxi3+cxi2=xi2yi axi3+bxi2+cxi=xiyi axi2+bxi+cn=yi \begin{aligned} &\Rightarrow a\sum{{{x}_{i}}^{4}}+b\sum{{{x}_{i}}^{3}}+c\sum{{{x}_{i}}^{2}}=\sum{{{x}_{i}}^{2}{{y}_{i}}} \\\ & \Rightarrow a\sum{{{x}_{i}}^{3}}+b\sum{{{x}_{i}}^{2}}+c\sum{{{x}_{i}}}=\sum{{{x}_{i}}{{y}_{i}}} \\\ & \Rightarrow a\sum{{{x}_{i}}^{2}}+b\sum{{{x}_{i}}}+cn=\sum{{{y}_{i}}} \\\ \end{aligned}
Here, n is the number of data in the data set. The summation of the terms needs to be calculated from the given data for x and y. Using these in the above equations and by solving simultaneously, we get the values of a, b and c and using these coefficients, we create a quadratic equation.

Complete step-by-step solution:
In order to solve this question, let us first write down the equations required. They are given as follows:
axi4+bxi3+cxi2=xi2yi axi3+bxi2+cxi=xiyi axi2+bxi+cn=yi \begin{aligned} & \Rightarrow a\sum{{{x}_{i}}^{4}}+b\sum{{{x}_{i}}^{3}}+c\sum{{{x}_{i}}^{2}}=\sum{{{x}_{i}}^{2}{{y}_{i}}} \\\ & \Rightarrow a\sum{{{x}_{i}}^{3}}+b\sum{{{x}_{i}}^{2}}+c\sum{{{x}_{i}}}=\sum{{{x}_{i}}{{y}_{i}}} \\\ & \Rightarrow a\sum{{{x}_{i}}^{2}}+b\sum{{{x}_{i}}}+cn=\sum{{{y}_{i}}} \\\ \end{aligned}
We find the value of xi4\sum{{{x}_{i}}^{4}} for the given data x as given below,
xi4=34+54+64+84+104+124+154\Rightarrow {{\sum{x}}_{i}}^{4}={{3}^{4}}+{{5}^{4}}+{{6}^{4}}+{{8}^{4}}+{{10}^{4}}+{{12}^{4}}+{{15}^{4}}
Expanding each of the terms by taking the powers of 4,
xi4=81+625+1296+4096+10000+20736+50625\Rightarrow {{\sum{x}}_{i}}^{4}=81+625+1296+4096+10000+20736+50625
Adding all the terms,
xi4=87459\Rightarrow {{\sum{x}}_{i}}^{4}=87459
Similarly, we need to calculate for the other summations as shown,
For xi3{{\sum{x}}_{i}}^{3} we take the cubed values of each of the x values and find their summation as,
xi3=33+53+63+83+103+123+153=6983\Rightarrow {{\sum{x}}_{i}}^{3}={{3}^{3}}+{{5}^{3}}+{{6}^{3}}+{{8}^{3}}+{{10}^{3}}+{{12}^{3}}+{{15}^{3}}=6983
Similarly, for xi2{{\sum{x}}_{i}}^{2} we take the squared values of each of the x values and find their summation as,
xi2=32+52+62+82+102+122+152=603\Rightarrow {{\sum{x}}_{i}}^{2}={{3}^{2}}+{{5}^{2}}+{{6}^{2}}+{{8}^{2}}+{{10}^{2}}+{{12}^{2}}+{{15}^{2}}=603
We find xi{{\sum{x}}_{i}} and yi{{\sum{y}}_{i}} by adding the data values in the x and y columns,
xi=3+5+6+8+10+12+15=59\Rightarrow {{\sum{x}}_{i}}=3+5+6+8+10+12+15=59
yi=3.45+6.9+8.79+12.91+17.48+22.49+30.85=102.87\Rightarrow {{\sum{y}}_{i}}=3.45+6.9+8.79+12.91+17.48+22.49+30.85=102.87
We also need the values of the terms xi2yi\sum{{{x}_{i}}^{2}{{y}_{i}}} and xiyi.\sum{{{x}_{i}}{{y}_{i}}}. This can be done by taking the square of the x term multiplied by the corresponding y terms and taking their sum for the first summation. For the second summation, we take the product of corresponding x and y terms and add them all together.
xi2yi=32×3.45+52×6.9+62×8.79+82×12.91+102×17.48+122×22.49+152×30.85 xi2yi=13274.04 \begin{aligned} & \Rightarrow {{\sum{{{x}_{i}}}}^{2}}{{y}_{i}}={{3}^{2}}\times 3.45+{{5}^{2}}\times 6.9+{{6}^{2}}\times 8.79+{{8}^{2}}\times 12.91+{{10}^{2}}\times 17.48+{{12}^{2}}\times 22.49+{{15}^{2}}\times 30.85 \\\ & \Rightarrow {{\sum{{{x}_{i}}}}^{2}}{{y}_{i}}=13274.04 \\\ \end{aligned}
Similarly for the second summation term,
xiyi=3×3.45+5×6.9+6×8.79+8×12.91+10×17.48+12×22.49+15×30.85 xiyi=1108.3 \begin{aligned} & \Rightarrow \sum{{{x}_{i}}}{{y}_{i}}=3\times 3.45+5\times 6.9+6\times 8.79+8\times 12.91+10\times 17.48+12\times 22.49+15\times 30.85 \\\ & \Rightarrow \sum{{{x}_{i}}}{{y}_{i}}=1108.3 \\\ \end{aligned}
Substituting all these in the given set of equations, we get the equations as,
87459a+6983b+603c=13274.04 6983a+603b+59c=1108.3 603a+59b+7c=102.87 \begin{aligned} & \Rightarrow 87459a+6983b+603c=13274.04 \\\ & \Rightarrow 6983a+603b+59c=1108.3 \\\ & \Rightarrow 603a+59b+7c=102.87 \\\ \end{aligned}
Solving for all these values of a, b and c using the method of simultaneous equations, which can be done by taking 2 equations at a time. Take the first two equations. And multiply the second equation by a fraction 60359\dfrac{603}{59} so as to make the coefficient of c same in both the equations.
87459a+6983b+603c=13274.04(1)\Rightarrow 87459a+6983b+603c=13274.04\ldots \left( 1 \right)
71368.6271a+6162.8644b+603c=11327.2017(2)\Rightarrow 71368.6271a+6162.8644b+603c=11327.2017\ldots \left( 2 \right)
Subtracting the above two equations,
 87459a+ 6983b+603c=13274.04 71368.6271a6162.8644b603c=11327.2017 \begin{aligned} & \Rightarrow \text{ }87459a+\text{ }6983b+603c=13274.04 \\\ & \Rightarrow -71368.6271a-6162.8644b-603c=-11327.2017 \\\ \end{aligned}
This gives us the equation with the c term eliminated.
16090.3729a+820.1356b=1946.8383(3)\Rightarrow 16090.3729a+820.1356b=1946.8383\ldots \left( 3 \right)
Next, we consider equations
6983a+603b+59c=1108.3 603a+59b+7c=102.87 \begin{aligned} & \Rightarrow 6983a+603b+59c=1108.3 \\\ & \Rightarrow 603a+59b+7c=102.87 \\\ \end{aligned}
We now multiply the second equation here by a fraction 597\dfrac{59}{7} to make the coefficients of c terms equal.
6983a+603b+59c=1108.3 5082.4286a+497.2857b+59c=867.0471 \begin{aligned} & \Rightarrow 6983a+603b+59c=1108.3 \\\ & \Rightarrow 5082.4286a+497.2857b+59c=867.0471 \\\ \end{aligned}
Now, we subtract the two equations
 6983a+ 603b+59c=1108.3 5082.4286a497.2857b59c=867.0471   1900.5714a+105.7143b+0c = 241.2529 (4)  \begin{aligned} & \Rightarrow \text{ }6983a+\text{ }603b+59c=1108.3 \\\ & \Rightarrow -5082.4286a-497.2857b-59c=-867.0471 \\\ & \text{ }\overline{\text{ 1900}\text{.5714}a+105.7143b+0c\text{ = 241}\text{.2529 }\ldots \left( 4 \right)\text{ }} \\\ \end{aligned}
Now we consider the equations 3 and 4 and multiply the equation 4 by a fraction 820.1356105.7143\dfrac{820.1356}{105.7143} to make the coefficient of b same and subtract the two equations as,
16090.3729a+820.1356b=1946.8383 14744.7059a820.1356b = 1871.6492   1345.667a =+75.1891  \begin{aligned} & \Rightarrow 16090.3729a+820.1356b=1946.8383 \\\ & \Rightarrow -\text{14744}\text{.7059}a-820.1356b\text{ = }-1871.6492 \\\ & \text{ }\overline{\text{ 1345}\text{.667}a\text{ =+75}\text{.1891 }} \\\ \end{aligned}
Now, we divide both sides of the resulting equation by 1345.667 to obtain the value of a.
a=75.18911345.667=0.05587\Rightarrow a=\dfrac{75.1891}{1345.667}=0.05587
Substituting this in the equation 3,
16090.3729×0.05587+820.1356b=1946.8383\Rightarrow 16090.3729\times 0.05587+820.1356b=1946.8383
Multiplying the terms,
898.9691+820.1356b=1946.8383\Rightarrow 898.9691+820.1356b=1946.8383
Subtracting both sides by 898.9691 and dividing both sides by 820.1356,
820.1356b=1047.8692\Rightarrow 820.1356b=1047.8692
b=1047.8692820.1356=1.2776\Rightarrow b=\dfrac{1047.8692}{820.1356}=1.2776
Now, we take the third equation in the set of simultaneous equations and substitute the values of a and b to calculate c.
603×0.05587+59×1.2776+7c=102.87\Rightarrow 603\times 0.05587+59\times 1.2776+7c=102.87
Multiplying and adding the terms on the left-hand side,
109.0680+7c=102.87\Rightarrow 109.0680+7c=102.87
Subtracting both sides by 109.0680 and dividing both sides by 102.87,
7c=102.87109.0680\Rightarrow 7c=102.87-109.0680
c=6.19807=0.8854\Rightarrow c=\dfrac{-6.1980}{7}=-0.8854
We have the values of a, b and c as,
a=0.05587,b=1.2776,c=0.8854\Rightarrow a=0.05587,b=1.2776,c=-0.8854
Rounding them all to 3 decimal digits, we get
a=0.056,b=1.278,c=0.886\Rightarrow a=0.056,b=1.278,c=-0.886
Forming a quadratic equation with these values as ax2+bx+c,a{{x}^{2}}+bx+c,
y^=0.056x2+1.278x0.886\Rightarrow \widehat{y}=0.056{{x}^{2}}+1.278x-0.886
Hence, the correct option is D.

Note: We need to know the concept of regression equation and its formation for a given set of data. It is important to know the method of solving simultaneous equations in order to obtain a solution for such problems. Students are required to know how to solve simultaneous equations.