Solveeit Logo

Question

Question: What is the problem in solving limit like this? $\lim_{x\to0} \frac{sinx-tanx}{x^3}$ $= \lim_{x\to...

What is the problem in solving limit like this?

limx0sinxtanxx3\lim_{x\to0} \frac{sinx-tanx}{x^3}

=limx0sinxx.x2tanxx.x2= \lim_{x\to0} \frac{sinx}{x.x^2} - \frac{tanx}{x.x^2}

=limx01x21x2= \lim_{x\to0} \frac{1}{x^2} - \frac{1}{x^2}

=0= 0

The answer is not zero.

Answer

The problem is the incorrect application of limit properties for indeterminate forms.

Explanation

Solution

The problem in the given solution is the incorrect application of limit properties. The limit of the difference of two functions is equal to the difference of their limits only if the individual limits exist and are finite. In this case, limx0sinxx3=limx0sinxx1x2=1=\lim_{x\to0} \frac{\sin x}{x^3} = \lim_{x\to0} \frac{\sin x}{x} \cdot \frac{1}{x^2} = 1 \cdot \infty = \infty limx0tanxx3=limx0tanxx1x2=1=\lim_{x\to0} \frac{\tan x}{x^3} = \lim_{x\to0} \frac{\tan x}{x} \cdot \frac{1}{x^2} = 1 \cdot \infty = \infty The original limit is of the indeterminate form \infty - \infty. The step limx0sinxx.x2tanxx.x2=limx01x21x2\lim_{x\to0} \frac{sinx}{x.x^2} - \frac{tanx}{x.x^2} = \lim_{x\to0} \frac{1}{x^2} - \frac{1}{x^2} incorrectly assumes that sinxx\frac{\sin x}{x} and tanxx\frac{\tan x}{x} can be replaced by their limit 1 while the remaining factor 1x2\frac{1}{x^2} tends to infinity. This is not allowed when the expression is in an indeterminate form. The approximations sinxx\sin x \approx x and tanxx\tan x \approx x are only the first terms in their Taylor series expansions, and for the given problem with x3x^3 in the denominator, higher order terms are significant.

To solve the limit correctly, we can use Taylor series expansions around x=0x=0: sinx=xx33!+O(x5)=xx36+O(x5)\sin x = x - \frac{x^3}{3!} + O(x^5) = x - \frac{x^3}{6} + O(x^5) tanx=x+x33+O(x5)\tan x = x + \frac{x^3}{3} + O(x^5) sinxtanx=(xx36)(x+x33)+O(x5)=x36x33+O(x5)=3x36+O(x5)=x32+O(x5)\sin x - \tan x = (x - \frac{x^3}{6}) - (x + \frac{x^3}{3}) + O(x^5) = -\frac{x^3}{6} - \frac{x^3}{3} + O(x^5) = -\frac{3x^3}{6} + O(x^5) = -\frac{x^3}{2} + O(x^5) limx0sinxtanxx3=limx0x32+O(x5)x3=limx0(12+O(x2))=12\lim_{x\to0} \frac{\sin x - \tan x}{x^3} = \lim_{x\to0} \frac{-\frac{x^3}{2} + O(x^5)}{x^3} = \lim_{x\to0} \left(-\frac{1}{2} + O(x^2)\right) = -\frac{1}{2}

Alternatively, we can manipulate the expression: limx0sinxtanxx3=limx0sinx(11cosx)x3=limx0sinx(cosx1)x3cosx\lim_{x\to0} \frac{\sin x - \tan x}{x^3} = \lim_{x\to0} \frac{\sin x (1 - \frac{1}{\cos x})}{x^3} = \lim_{x\to0} \frac{\sin x (\cos x - 1)}{x^3 \cos x} =limx0sinxxcosx1x21cosx= \lim_{x\to0} \frac{\sin x}{x} \cdot \frac{\cos x - 1}{x^2} \cdot \frac{1}{\cos x} We know that limx0sinxx=1\lim_{x\to0} \frac{\sin x}{x} = 1 and limx01cosx=11=1\lim_{x\to0} \frac{1}{\cos x} = \frac{1}{1} = 1. For limx0cosx1x2\lim_{x\to0} \frac{\cos x - 1}{x^2}, we use the standard limit limx01cosxx2=12\lim_{x\to0} \frac{1 - \cos x}{x^2} = \frac{1}{2}. So, limx0cosx1x2=limx01cosxx2=12\lim_{x\to0} \frac{\cos x - 1}{x^2} = -\lim_{x\to0} \frac{1 - \cos x}{x^2} = -\frac{1}{2}. Therefore, limx0sinxtanxx3=1(12)1=12\lim_{x\to0} \frac{\sin x - \tan x}{x^3} = 1 \cdot \left(-\frac{1}{2}\right) \cdot 1 = -\frac{1}{2}.

The problem in the given solution is the incorrect application of limit properties for indeterminate forms.