Solveeit Logo

Question

Question: What is the period of function \[{\sin ^4}x + {\cos ^2}x\]?...

What is the period of function sin4x+cos2x{\sin ^4}x + {\cos ^2}x?

Explanation

Solution

To find the period of function f(x)=sin4x+cos2xf(x) = {\sin ^4}x + {\cos ^2}x, we will be using the concept of function to solve the problem. As we know, a periodic function is a function that repeats its values after every particular interval. Using the periodicity of sine and cosine functions we will check for the smallest value for which f(T+x)=f(x)f(T + x) = f(x) by putting T=π2T = \dfrac{\pi }{2}.

Complete step by step answer:
We have been given a function f(x)=sin4x+cos2xf(x) = {\sin ^4}x + {\cos ^2}x and we have to find the period of f(x)f(x).
We know that periodic functions are those which repeat their values after a fixed constant interval called the period.
Generally, for a function f(x)f(x), if f(T+x)=f(x)f(T + x) = f(x) then TT is the period.
For example, the sine function has a period of 2π2\pi because 2π2\pi is the smallest value for which the value of sin(2π+x)=sinx\sin \left( {2\pi + x} \right) = \sin x, for all values of xx.
Now, we have to find the period of f(x)=sin4x+cos2xf(x) = {\sin ^4}x + {\cos ^2}x.
f(T+x)=sin4(T+x)+cos2(T+x)\Rightarrow f(T + x) = {\sin ^4}\left( {T + x} \right) + {\cos ^2}\left( {T + x} \right)
Putting T=π2T = \dfrac{\pi }{2}, we see that,
f(π2+x)=sin4(π2+x)+cos2(π2+x)\Rightarrow f\left( {\dfrac{\pi }{2} + x} \right) = {\sin ^4}\left( {\dfrac{\pi }{2} + x} \right) + {\cos ^2}\left( {\dfrac{\pi }{2} + x} \right)
As we know that, sin(π2+x)=cosx\sin \left( {\dfrac{\pi }{2} + x} \right) = \cos x and cos(π2+x)=sinx\cos \left( {\dfrac{\pi }{2} + x} \right) = - \sin x.
Putting this, we get
f(π2+x)=(cosx)4+(sinx)2\Rightarrow f\left( {\dfrac{\pi }{2} + x} \right) = {\left( {\cos x} \right)^4} + {\left( { - \sin x} \right)^2}
On simplification, we get
f(π2+x)=cos4x+sin2x\Rightarrow f\left( {\dfrac{\pi }{2} + x} \right) = {\cos ^4}x + {\sin ^2}x
On rewriting, we get
f(π2+x)=cos2x×cos2x+sin2x\Rightarrow f\left( {\dfrac{\pi }{2} + x} \right) = {\cos ^2}x \times {\cos ^2}x + {\sin ^2}x
As we know, cos2x+sin2x=1{\cos ^2}x + {\sin ^2}x = 1 i.e., cos2x=1sin2x{\cos ^2}x = 1 - {\sin ^2}x. Using this, we get
f(π2+x)=cos2x(1sin2x)+sin2x\Rightarrow f\left( {\dfrac{\pi }{2} + x} \right) = {\cos ^2}x\left( {1 - {{\sin }^2}x} \right) + {\sin ^2}x
On multiplication, we get
f(π2+x)=cos2xcos2xsin2x+sin2x\Rightarrow f\left( {\dfrac{\pi }{2} + x} \right) = {\cos ^2}x - {\cos ^2}x{\sin ^2}x + {\sin ^2}x
On taking common, we get
f(π2+x)=cos2x+sin2x(1cos2x)\Rightarrow f\left( {\dfrac{\pi }{2} + x} \right) = {\cos ^2}x + {\sin ^2}x\left( {1 - {{\cos }^2}x} \right)
Using cos2x+sin2x=1{\cos ^2}x + {\sin ^2}x = 1, we get
f(π2+x)=cos2x+sin2x×(sin2x)\Rightarrow f\left( {\dfrac{\pi }{2} + x} \right) = {\cos ^2}x + {\sin ^2}x \times \left( {{{\sin }^2}x} \right)
On simplifying, we get
f(π2+x)=cos2x+sin4x\Rightarrow f\left( {\dfrac{\pi }{2} + x} \right) = {\cos ^2}x + {\sin ^4}x
On rewriting, we get
f(π2+x)=sin4x+cos2x\Rightarrow f\left( {\dfrac{\pi }{2} + x} \right) = {\sin ^4}x + {\cos ^2}x
=f(x)= f\left( x \right)
Therefore, the period of function sin4x+cos2x{\sin ^4}x + {\cos ^2}x is π2\dfrac{\pi }{2}.

Note:
Here, for f(x)=sin4x+cos2xf(x) = {\sin ^4}x + {\cos ^2}x, f(π+x)=f(x)f(\pi + x) = f(x). But, π\pi is not the period of f(x)f(x) because the period is always the least value of TT which satisfies f(T+x)=f(x)f(T + x) = f(x). To solve this type of question, we need to know the fundamental period of trigonometric functions. Generally, we have three basic trigonometric functions, sine, cosine and tan having periods 2π2\pi , 2π2\pi and π\pi respectively.