Solveeit Logo

Question

Question: What is the perimeter of a regular octagon with a radius of length 20?...

What is the perimeter of a regular octagon with a radius of length 20?

Explanation

Solution

Hint : Here in this question, we have to find the perimeter of a regular octagon of given radius of length r=20r = 20 . First, we have to find the length ll of each side of octagon using a distance formula l=(y2y1)2+(x2x1)2l = \sqrt {{{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{x_2} - {x_1}} \right)}^2}} and later find a perimeter using a formula P=8×lP = 8 \times l\, . If we are finding the perimeter of a regular octagon, then we know that all eight sides are equal lengths, so we can simplify the formula using multiplication operation to get the required solution.

Complete step-by-step answer :
In geometry, perimeter can be defined as the path or the boundary that surrounds a shape. It can also be defined as the length of the outline of a shape.
If a octagon is regular, then all the sides are equal in length, and eight angles are of equal measures
Consider a regular octagon having radius of length r=20r = 20 , which is same for vertices of pentagons.
In figure, the red circle circumscribes the outer radius and the green circle the inner one.

Let consider r=20r = 20 be the outer radius - that is the radius of the red circle.
Then, the vertices of the octagon centred at origin i.e., (0,0)\left( {0,0} \right) are at (±r,0)\left( { \pm \,r,0} \right) , (0,±r)\left( {0, \pm \,r} \right) and (±r2,±r2)\left( { \pm \,\dfrac{r}{{\sqrt 2 }}, \pm \,\dfrac{r}{{\sqrt 2 }}} \right) .
So the length of one side of regular octagon is distance between (r,0)\left( {r,\,0} \right) and (r2,r2)\left( {\dfrac{r}{{\sqrt 2 }},\,\dfrac{r}{{\sqrt 2 }}} \right)
Let consider a distance formula l=(y2y1)2+(x2x1)2l = \sqrt {{{\left( {{y_2} - {y_1}} \right)}^2} + {{\left( {{x_2} - {x_1}} \right)}^2}} , on substituting we have
l=(r20)2+(r2r)2\Rightarrow \,\,l = \sqrt {{{\left( {\dfrac{r}{{\sqrt 2 }} - 0} \right)}^2} + {{\left( {\dfrac{r}{{\sqrt 2 }} - r} \right)}^2}}
l=(r2)2+(r2r)2\Rightarrow \,\,l = \sqrt {{{\left( {\dfrac{r}{{\sqrt 2 }}} \right)}^2} + {{\left( {\dfrac{r}{{\sqrt 2 }} - r} \right)}^2}}
l=r2(12)2+r2(121)2\Rightarrow \,\,l = \sqrt {{r^2}{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} + {r^2}{{\left( {\dfrac{1}{{\sqrt 2 }} - 1} \right)}^2}}
Take r2{r^2} to outside, then
l=r(12)2+(121)2\Rightarrow \,\,l = r\sqrt {{{\left( {\dfrac{1}{{\sqrt 2 }}} \right)}^2} + {{\left( {\dfrac{1}{{\sqrt 2 }} - 1} \right)}^2}}
Simplify using a algebraic identity (ab)2=a2+b22ab{\left( {a - b} \right)^2} = {a^2} + {b^2} - 2ab , we have
l=r1(2)2+1(2)2+122\Rightarrow \,\,l = r\sqrt {\dfrac{1}{{{{\left( {\sqrt 2 } \right)}^2}}} + \dfrac{1}{{{{\left( {\sqrt 2 } \right)}^2}}} + 1 - \dfrac{2}{{\sqrt 2 }}}
On simplification, we get
l=r12+12+122\Rightarrow \,\,l = r\sqrt {\dfrac{1}{2} + \dfrac{1}{2} + 1 - \dfrac{2}{{\sqrt 2 }}}
l=r1+122\Rightarrow \,\,l = r\sqrt {1 + 1 - \dfrac{2}{{\sqrt 2 }}}
l=r22\Rightarrow \,\,l = r\sqrt {2 - \sqrt 2 } ------(1)
Which is the length of the each side of the regular octagon when rr be the outer radius.
Then perimeter of regular octagon is
P=8×l\Rightarrow \,\,P = 8 \times l\,
On substituting equation (1), we have
P=8×r22\Rightarrow \,\,P = 8 \times r\sqrt {2 - \sqrt 2 }
given r=20r = 20 , then
P=8×2022\Rightarrow \,\,P = 8 \times 20\sqrt {2 - \sqrt 2 }
P=16022\Rightarrow \,\,P = 160\sqrt {2 - \sqrt 2 }
On using calculator, we get the exact value
P=16022122.46\Rightarrow \,\,P = 160\sqrt {2 - \sqrt 2 } \simeq 122.46
Now, consider r1=20{r_1} = 20 be the inner radius - that is the radius of the green circle
The inner radius will be r1=rcosθ{r_1} = r\cos \theta
From the figure we have θ=π8\theta = \dfrac{\pi }{8} , then
r1=rcos(π8)\Rightarrow \,\,{r_1} = r\cos \left( {\dfrac{\pi }{8}} \right)
By using a calculator, the value of cos(π8)=2+22\cos \left( {\dfrac{\pi }{8}} \right) = \dfrac{{\sqrt {2 + \sqrt 2 } }}{2} , then
r1=r(2+22)\Rightarrow \,\,{r_1} = r\left( {\dfrac{{\sqrt {2 + \sqrt 2 } }}{2}} \right)
On cross multiplication, we have
r=2r12+2\Rightarrow \,r = \,\dfrac{{2{r_1}}}{{\sqrt {2 + \sqrt 2 } }} ------(2)
On substituting equation (2) in (1), we get the length of each side i.e.,
l=2r12+222\Rightarrow \,\,l = \dfrac{{2{r_1}}}{{\sqrt {2 + \sqrt 2 } }}\sqrt {2 - \sqrt 2 }
l=2r1222+2\Rightarrow \,\,l = 2{r_1}\dfrac{{\sqrt {2 - \sqrt 2 } }}{{\sqrt {2 + \sqrt 2 } }}
To rationalize the denominator, we have to multiply and divide the RHS by 2+2\sqrt {2 + \sqrt 2 } , then
l=2r1222+2×2+22+2\Rightarrow \,\,l = 2{r_1}\dfrac{{\sqrt {2 - \sqrt 2 } }}{{\sqrt {2 + \sqrt 2 } }} \times \dfrac{{\sqrt {2 + \sqrt 2 } }}{{\sqrt {2 + \sqrt 2 } }}
l=2r1(22)(2+2)(2+2)(2+2)\Rightarrow \,\,l = 2{r_1}\dfrac{{\left( {\sqrt {2 - \sqrt 2 } } \right)\left( {\sqrt {2 + \sqrt 2 } } \right)}}{{\left( {\sqrt {2 + \sqrt 2 } } \right)\left( {\sqrt {2 + \sqrt 2 } } \right)}}
l=2r1(22)(2+2)(2+2)2\Rightarrow \,\,l = 2{r_1}\dfrac{{\sqrt {\left( {2 - \sqrt 2 } \right)\left( {2 + \sqrt 2 } \right)} }}{{{{\left( {\sqrt {2 + \sqrt 2 } } \right)}^2}}}
On simplification, we get
l=2r14+222222+2\Rightarrow \,\,l = 2{r_1}\dfrac{{\sqrt {4 + 2\sqrt 2 - 2\sqrt 2 - 2} }}{{2 + \sqrt 2 }}
l=2r122+2\Rightarrow \,\,l = 2{r_1}\dfrac{{\sqrt 2 }}{{2 + \sqrt 2 }} -----------(3)
Which is the length of each side of the regular octagon when rr be the inner radius.
Then perimeter of regular octagon is
P=8×l\Rightarrow \,\,P = 8 \times l\,
On substituting equation (1), we have
P=8×2r122+2\Rightarrow \,\,P = 8 \times 2{r_1}\dfrac{{\sqrt 2 }}{{2 + \sqrt 2 }}
P=16r122+2\Rightarrow \,\,P = 16{r_1}\dfrac{{\sqrt 2 }}{{2 + \sqrt 2 }}
given r1=20{r_1} = 20 , then
P=16(20)22+2\Rightarrow \,\,P = 16\left( {20} \right)\dfrac{{\sqrt 2 }}{{2 + \sqrt 2 }}
P=32022+2\Rightarrow \,\,P = 320\dfrac{{\sqrt 2 }}{{2 + \sqrt 2 }}
On using calculator, we get the exact value
P=32022+2132.55\Rightarrow \,\,P = 320\dfrac{{\sqrt 2 }}{{2 + \sqrt 2 }} \simeq 132.55
Hence, the perimeter of regular octagon of radius 20 is
If the outer radius is 20, then the perimeter is: P=16022122.46P = 160\sqrt {2 - \sqrt 2 } \simeq 122.46
If the inner radius is 20, then the perimeter is: P=32022+2132.55\,P = 320\dfrac{{\sqrt 2 }}{{2 + \sqrt 2 }} \simeq 132.55
So, the correct answer is “132.55\simeq 132.55”.

Note : While determining the perimeter we use the formula. The unit for the perimeter will be the same as the unit of the length of a side or polygon. Whereas the unit for the area will be the square of the unit of the length of a polygon. We should not forget to write the unit with a final answer and we should also know about regular and irregular polygons.