Solveeit Logo

Question

Question: What is the Order of Determinant?...

What is the Order of Determinant?

Explanation

Solution

We have to solve this question by stating the definition of order of determinant . We will also give examples of order of determinants . We will also define the value of order of determinants. We will also mention the various operations of determinants which can be applied to the determinant matrix .

Complete step-by-step solution:
To every square matrix   S = [ sij ]\;S{\text{ }} = {\text{ }}\left[ {{\text{ }}{s_{ij}}{\text{ }}} \right] of order nn , we can associate a number ( real or complex ) called determinant of the square matrix SS , where s(ij)=(i,j)(th){s_{(ij)}} = {(i,j)^{(th)}}element of SS . This is a thought function which associates each of the square matrices with a unique value ( real or complex ) . If NN is the set of square matrices , OO is the set of numbers ( real or complex ) and   f : N  O\;f{\text{ }}:{\text{ }}N{\text{ }} \geqslant {\text{ }}O is defined by f(S) = of\left( S \right){\text{ }} = {\text{ }}o , where SNS \in NandoOo \in O , then f(S)f\left( S \right) is called the determinant of SS . It is also denoted by  S \left| {{\text{ }}S{\text{ }}} \right| or det Sdet{\text{ }}S .
If S{\text{ }} = \left( {\begin{array}{*{20}{c}} a&b; \\\ c&d; \end{array}} \right)
Then the value of determinant of SS is given as  S  =\left| {{\text{ }}S{\text{ }}} \right|{\text{ }} = \left| {{\text{ }}\begin{array}{*{20}{c}} a&b; \\\ c&d; \end{array}} \right|
= det ( S ) .= {\text{ }}det{\text{ }}\left( {{\text{ }}S{\text{ }}} \right){\text{ }}.
For matrix SS ,  S \left| {{\text{ }}S{\text{ }}} \right| is read as a determinant of SS and not as a modulus of S .
Determinant exists only for square matrices only .
Types of determinants :
1. Order One :
Let S = [ s ]S{\text{ }} = {\text{ }}\left[ {{\text{ }}s{\text{ }}} \right] be the matrix of order 11 , then the determinant of SS is defined to be equal to ss .
2. Order Two :
Let S{\text{ }} = \left( {\begin{array}{*{20}{c}} {{s_{11}}}&{{s_{12}}} \\\ {{s_{21}}}&{{s_{22}}} \end{array}} \right) be a matrix of order 2 × 22{\text{ }} \times {\text{ }}2 , then
The determinant of SS is defined as :
det ( S ) = s11 × s22  s12 × s21det{\text{ }}\left( {{\text{ }}S{\text{ }}} \right){\text{ }} = {\text{ }}{s_{11}}{\text{ }} \times {\text{ }}{s_{22}}{\text{ }} - {\text{ }}{s_{12}}{\text{ }} \times {\text{ }}{s_{21}}
3. Order three :
\left( {\begin{array}{*{20}{c}} {{s_{11}}}&{{s_{12}}}&{{s_{13}}} \\\ {{s_{21}}}&{{s_{22}}}&{{s_{23}}} \\\ {{s_{31}}}&{{s_{32}}}&{{s_{33}}} \end{array}} \right)
The determinant of S of the order 3 × 33{\text{ }} \times {\text{ }}3 is written as :
det ( S ) = s11 × [ s22 × s33  s32× s23]  s12 × [ s21 × s33  s31× s23 ] + s13 × [ s21 × s32  s31 × s22 ]det{\text{ }}\left( {{\text{ }}S{\text{ }}} \right){\text{ }} = {\text{ }}{s_{11}}{\text{ }} \times {\text{ }}\left[ {{\text{ }}{s_{22}}{\text{ }} \times {\text{ }}{s_{33}}{\text{ }} - {\text{ }}{s_{32}} \times {\text{ }}{s_{23}}} \right]{\text{ }} - {\text{ }}{s_{12}}{\text{ }} \times {\text{ }}\left[ {{\text{ }}{s_{21}}{\text{ }} \times {\text{ }}{s_{33}}{\text{ }} - {\text{ }}{s_{31}} \times {\text{ }}{s_{23}}{\text{ }}} \right]{\text{ }} + {\text{ }}{s_{13}}{\text{ }} \times {\text{ }}\left[ {{\text{ }}{s_{21}}{\text{ }} \times {\text{ }}{s_{32}}{\text{ }} - {\text{ }}{s_{31}}{\text{ }} \times {\text{ }}{s_{22}}{\text{ }}} \right]

Note: Whenever a row or a column is interchanged with the other then the value of the determinant remains unchanged. If any two rows ( or columns ) of a determinant are interchanged , then the sign of the value of the determinant changes. If any two rows ( or columns ) of a determinant are identical ( all the corresponding elements are the same ) , then the value of the determinant is zero .