Solveeit Logo

Question

Question: What is the moment generating function of a Poisson distribution?...

What is the moment generating function of a Poisson distribution?

Explanation

Solution

In order to solve this, we will first let XX be a discrete random variable having Poisson distribution with parameter λ\lambda . Then using the formula of a moment generating function i.e., MX(t)=x=0Pr(X=x)etx{M_X}\left( t \right) = \sum\limits_{x = 0}^{} {\Pr \left( {X = x} \right){e^{tx}}} we will generate the moment generating function of a Poisson distribution.
Here Pr(X=x)\Pr \left( {X = x} \right) is the probability mass function or discrete density function
and the probability mass function of the Poisson distribution is defined as: Pr(X=x)=λxeλx!\Pr \left( {X = x} \right) = \dfrac{{{\lambda ^x}{e^{ - \lambda }}}}{{x!}}

Complete solution:
The moment generating function of a discrete random variable XX is a function Mx(t){M_x}\left( t \right) defined as Mx(t)=x=0Pr(X=x)etx{M_x}\left( t \right) = \sum\limits_{x = 0}^\infty {\Pr \left( {X = x} \right){e^{tx}}}
where Pr(X=x)\Pr \left( {X = x} \right) is the probability mass function or discrete density function.
Now we will see what is Poisson distribution,
A random variable XX is said to have a Poisson distribution if discrete density function is defined as Pr(X=x)=λxeλx!\Pr \left( {X = x} \right) = \dfrac{{{\lambda ^x}{e^{ - \lambda }}}}{{x!}} where λ\lambda is the parameter of the Poisson distribution.
And it is represented as XP(λ)X \sim P\left( \lambda \right)
Now we will find the moment generating function of a Poisson distribution
From the definition of the Poisson distribution, XX has probability mass function:
Pr(X=x)=λxeλx!\Pr \left( {X = x} \right) = \dfrac{{{\lambda ^x}{e^{ - \lambda }}}}{{x!}}
And from the definition of a moment generating function, we have
Mx(t)=x=0Pr(X=x)etx{M_x}\left( t \right) = \sum\limits_{x = 0}^\infty {\Pr \left( {X = x} \right){e^{tx}}}
Therefore, on substituting the value we get
Mx(t)=x=0λxeλx!etx{M_x}\left( t \right) = \sum\limits_{x = 0}^\infty {\dfrac{{{\lambda ^x}{e^{ - \lambda }}}}{{x!}}{e^{tx}}}

eλ{e^{ - \lambda }} is a constant term, so we can take it out from the summation
Therefore, we get
Mx(t)=eλx=0λxx!etx\Rightarrow {M_x}\left( t \right) = {e^{ - \lambda }}\sum\limits_{x = 0}^\infty {\dfrac{{{\lambda ^x}}}{{x!}}{e^{tx}}}
On combining the numerator, we get
Mx(t)=eλx=0(λet)xx!\Rightarrow {M_x}\left( t \right) = {e^{ - \lambda }}\sum\limits_{x = 0}^\infty {\dfrac{{{{\left( {\lambda {e^t}} \right)}^x}}}{{x!}}}
Now we know that
Power series expansion for exponential function is
ex=1+x+x22!+x33!+.....{e^x} = 1 + x + \dfrac{{{x^2}}}{{2!}} + \dfrac{{{x^3}}}{{3!}} + .....
Therefore, we get
Mx(t)=eλeλet\Rightarrow {M_x}\left( t \right) = {e^{ - \lambda }}{e^{\lambda {e^t}}}
Mx(t)=eλ(et1)\Rightarrow {M_x}\left( t \right) = {e^{\lambda \left( {{e^t} - 1} \right)}}
which is the required moment generating function of a Poisson distribution.

Note:
Poisson distribution can also be defined as a limiting case of binomial distribution where nn \to \infty and p0p \to 0 .
Also remember the mean of a Poisson distribution, E(X)=λE\left( X \right) = \lambda and variance of a Poisson distribution, VAR(X)=λVAR\left( X \right) = \lambda which means Poisson distribution is a discrete distribution in which the value of mean and variance is equal.