Solveeit Logo

Question

Question: What is the molarity and normality of a \(13\)% solution (by weight) of sulphuric acid with a densit...

What is the molarity and normality of a 1313% solution (by weight) of sulphuric acid with a density of 1.021.02 g/mL and also calculate the volume (in mL) that is required to prepare 1.51.5N of this acid to make it up to 100100mL?
A. Molarity =1.351.35, Normality =2.702.70, Volume = 180180mL
B. Molarity =22, Normality =4, Volume = 200mL
C. Molarity =, Normality =22 33, Volume = 150150mL
D. None of these

Explanation

Solution

First we will determine the mole of sulphuric acid then by using density formula we will determine the volume of solution. We use a molarity formula to determine the molarity. We will determine the f-factor for sulphuric acid and then multiplying the n-factor with molarity we will determine the normality. By using the dilution relation of normality and volume we will determine the volume.

Formula used:
mole = massmolarmass{\text{mole}}\,{\text{ = }}\,\dfrac{{{\text{mass}}}}{{\,{\text{molar}}\,{\text{mass}}}}
density = massvolume{\text{density}}\,{\text{ = }}\,\dfrac{{{\text{mass}}}}{{{\text{volume}}}}
molarity = molesofsolutevolumeofsolution{\text{molarity}}\,\,{\text{ = }}\,\dfrac{{{\text{moles}}\,{\text{of}}\,{\text{solute}}}}{{{\text{volume}}\,{\text{of}}\,{\text{solution}}}}
Normality = molarity \timesvalence factor{\text{molarity}}\,\,{\text{ \times }}\,{\text{valence factor}}
N1V1 = N2V2{{\text{N}}_{\text{1}}}{{\text{V}}_{\text{1}}}\,{\text{ = }}\,{{\text{N}}_{\text{2}}}{{\text{V}}_{\text{2}}}

Complete step-by-step answer:
1313% (by weight) means 1313g sulphuric acid is dissolved in 100100g of solution.
So, the amount of solvent is,
10013=87100 - 13\, = \,87g.
We will determine the mole of sulphuric acid as follows:
mole = massmolarmass{\text{mole}}\,{\text{ = }}\,\dfrac{{{\text{mass}}}}{{\,{\text{molar}}\,{\text{mass}}}}
Molar mass of sulphuric acid is 9898 g/mol.
On substituting 1313g for mass and 9898 g/mol for molar mass,
mole = 13g98g/mol{\text{mole}}\,{\text{ = }}\,\dfrac{{13\,{\text{g}}}}{{\,98\,{\text{g/mol}}}}
mole = 0.133mol{\text{mole}}\,{\text{ = }}\,0.133\,{\text{mol}}
So, the mole of sulphuric acid is0.1330.133mole.
We will convert the amount of solvent from g to kg as follows:
1000g = 1kg{\text{1000}}\,{\text{g = }}\,{\text{1}}\,{\text{kg}}
87g = 0.087kg87\,{\text{g}}\,{\text{ = }}\,0.087\,{\text{kg}}

We will determine the volume of water as follows:
density = massvolume{\text{density}}\,{\text{ = }}\,\dfrac{{{\text{mass}}}}{{{\text{volume}}}}
Substitute 1.02g. mL11.02\,{\text{g}}\,{\text{. m}}{{\text{L}}^{ - 1}} for density of solution and 100g{\text{100g}} for mass of solution.
1.02g. mL1 = 100gvolume1.02\,{\text{g}}\,{\text{. m}}{{\text{L}}^{ - 1}}\,{\text{ = }}\,\dfrac{{100\,{\text{g}}}}{{{\text{volume}}}}
volume = 100g1.02g. mL1{\text{volume}}\,{\text{ = }}\,\dfrac{{100\,{\text{g}}}}{{1.02\,{\text{g}}\,{\text{. m}}{{\text{L}}^{ - 1}}}}
volume = 98.04mL{\text{volume}}\,{\text{ = }}\,98.04\,{\text{mL}}
We will convert the volume of water from mL to L as follows:
1000mL = 1 L1000\,{\text{mL}}\,{\text{ = }}\,{\text{1 L}}
98.04mL=0.09804L98.04\,{\text{mL}} = 0.09804\,{\text{L}}
We will determine the molarity as follows:
molarity = molesofsolutevolumeofsolution{\text{molarity}}\,\,{\text{ = }}\,\dfrac{{{\text{moles}}\,{\text{of}}\,{\text{solute}}}}{{{\text{volume}}\,{\text{of}}\,{\text{solution}}}}
On substituting 0.098040.09804L for volume of solution and 0.1330.133mol for mole of sulphuric acid.
Molarity = 0.133mol0.09804L{\text{Molarity}}\,{\text{ = }}\,\dfrac{{0.133\,{\text{mol}}}}{{0.09804\,\,{\text{L}}}}
Molarity = 1.35M{\text{Molarity}}\,{\text{ = }}\,1.35\,{\text{M}}
So, the molarity is1.351.35M.
Sulphuric acid dissociates as follows:
H2SO42H++SO42{{\text{H}}_{\text{2}}}{\text{S}}{{\text{O}}_{\text{4}}}\, \to \,2{{\text{H}}^ + }\, + \,{\text{SO}}_4^{2 - }
Sulphuric acid is given two protons, so the n-factor for the sulphuric acid is 22.
We will determine the normality of sulphuric acid solution as follows:
Normality = molarity \timesnfactor{\text{Normality = }}\,{\text{molarity}}\,{\text{ \times }}\,{\text{n}} - {\text{factor}}
On substituting 22 for n-factor and 1.351.35M for molarity,
Normality = 1.35 \times2{\text{Normality = }}\,{\text{1}}{\text{.35}}\,{\text{ \times }}\,2
Normality = 2.70{\text{Normality = }}\,2.70
So, the normality of the solution is 2.702.70N.
Now we will determine the volume of1.51.5N of acid to make it up to 100100mL having normality2.702.70N.
N1V1 = N2V2{{\text{N}}_{\text{1}}}{{\text{V}}_{\text{1}}}\,{\text{ = }}\,{{\text{N}}_{\text{2}}}{{\text{V}}_{\text{2}}}
Where,
N1{{\text{N}}_{\text{1}}}is the normality of the solution having V1{{\text{V}}_{\text{1}}}volume.
N2{{\text{N}}_{\text{2}}}is the normality of the solution having V2{{\text{V}}_{\text{2}}}volume.
On substituting 1.51.5N for N1{{\text{N}}_{\text{1}}}, 2.702.70 N for N2{{\text{N}}_{\text{2}}}, and 100100mL for V2{{\text{V}}_{\text{2}}},

1.5N×V1 = 2.70N×100 mL{\text{1}}{\text{.5}}\,{\text{N}}\,\, \times \,{{\text{V}}_1}\,{\text{ = }}\,{\text{2}}{\text{.70}}\,{\text{N}}\,\, \times \,\,\,{\text{100 mL}}
V1 = 2.70×1001.5{{\text{V}}_1}\,{\text{ = }}\,\dfrac{{{\text{2}}{\text{.70}}\, \times \,{\text{100}}}}{{1.5}}
V1 = 180mL{{\text{V}}_1}\,{\text{ = }}\,180\,{\text{mL}}
So, the volume (in mL) that is required to prepare 1.51.5N of this acid to make it up to 100100mL is 180180mL.

Therefore, option (A) Molarity =1.351.35, Normality =2.702.70, Volume = 180180mL, is correct.

Note: n-factor is the number of electrons gained or losses during a reaction for the proton donated. For acids the n-factor is determined as the number of protons donated. Molarity is defined as the moles of solute present in per litter so the solution. Normality is the equivalent weight of solute present in per litter of the solvent. The equivalent weight is determined by dividing the molar mass by n-factor. The solution whose concentration is determined in normality terms is known as normal solution where the solution whose concentration is determined in terms of molarity is known as molar solution.