Solveeit Logo

Question

Question: What is the molar solubility of \(\text{Al(OH}{{\text{)}}_{\text{3}}}\)in \[\text{0}\text{.2 M NaOH}...

What is the molar solubility of Al(OH)3\text{Al(OH}{{\text{)}}_{\text{3}}}in 0.2 M NaOH\text{0}\text{.2 M NaOH}solution?
Given that, the solubility product of Al(OH)3 = 2.4 !!×!! 10-24\text{Al}{{\left( \text{OH} \right)}_{\text{3}}}\text{ = 2}\text{.4 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{-24}}}
A)12×102312\times {{10}^{-23}}
B) 12×102112\times {{10}^{-21}}
C) 3 ×10193\text{ }\times {{10}^{-19}}
D) 3×10223\times {{10}^{-22}}

Explanation

Solution

Solubility is the property of solute to get dissolved in the solvent to form a solution. The solubility product is the measure of the number of solute dissolves. the equilibrium constant of the solubility Ksp{{\text{K}}_{\text{sp}}} is proportional to the concentration of ions of solute in a solution.

Complete step by step answer:
Solubility is the characteristic feature of solute. It determines the dissolution of a solute in the solvent to form a solution. The solubility product Ksp{{\text{K}}_{\text{sp}}} is the measure of the concentration of ions that goes into the solution.
The solubility product for general solute AB2\text{A}{{\text{B}}_{\text{2}}} as shown below.
AB2A++2B-\text{A}{{\text{B}}_{\text{2}}}\rightleftarrows {{\text{A}}^{\text{+}}}\text{+2}{{\text{B}}^{\text{-}}}
Therefore, Ksp=[A+][B-]2{{\text{K}}_{\text{sp}}}=\left[ {{\text{A}}^{\text{+}}} \right]{{\left[ {{\text{B}}^{\text{-}}} \right]}^{\text{2}}}
Where [A+]\left[ {{\text{A}}^{\text{+}}} \right] and [B-]\left[ {{\text{B}}^{\text{-}}} \right] represent the molar solubility of the solute AB2\text{A}{{\text{B}}_{\text{2}}}.
We are given an Al(OH)3\text{Al(OH}{{\text{)}}_{\text{3}}} in NaOH\text{NaOH} solution. The data given is
Molarity of NaOH\text{NaOH}solution=0.2M\text{=0}\text{.2M}
Solubility product Al(OH)3\text{Al(OH}{{\text{)}}_{\text{3}}}is 2.4×1024M2.4\times {{10}^{-24}}\text{M}
To find the molar solubility (S) of Al(OH)3\text{Al(OH}{{\text{)}}_{\text{3}}}
The Al(OH)3\text{Al(OH}{{\text{)}}_{\text{3}}}dissociates itself into Al3+\text{A}{{\text{l}}^{\text{3+}}}andOH-\text{O}{{\text{H}}^{\text{-}}}. One mole of Al(OH)3\text{Al(OH}{{\text{)}}_{\text{3}}}dissociates into one mole of Al3+\text{A}{{\text{l}}^{\text{3+}}}and three moles of OH-\text{O}{{\text{H}}^{\text{-}}}-.The reaction of Al(OH)3\text{Al(OH}{{\text{)}}_{\text{3}}}as follows:
Al(OH)3Al3++3OH-\text{Al(OH}{{\text{)}}_{\text{3}}}\rightleftarrows \text{A}{{\text{l}}^{3+}}+3\text{O}{{\text{H}}^{\text{-}}}
Thus the solubility product Ksp{{\text{K}}_{\text{sp}}}for Al(OH)3\text{Al(OH}{{\text{)}}_{\text{3}}} is
Ksp=[Al3+][OH-]3{{\text{K}}_{\text{sp}}}\text{=}\left[ \text{A}{{\text{l}}^{\text{3+}}} \right]{{\left[ \text{O}{{\text{H}}^{\text{-}}} \right]}^{\text{3}}}
Let the concentration of ions formed by the dissociation of Al(OH)3\text{Al(OH}{{\text{)}}_{\text{3}}} as ‘S’.Let the concentration of Al(OH)3\text{Al(OH}{{\text{)}}_{\text{3}}} as ‘S’ before dissociation in solution.
 Al(OH)3Al3++3OH- Before S 0 0 After 0 S 3S \begin{aligned} & \text{ Al(OH}{{\text{)}}_{\text{3}}}\rightleftarrows \text{A}{{\text{l}}^{3+}}+3\text{O}{{\text{H}}^{\text{-}}} \\\ & Before\text{ S 0 0} \\\ & After\text{ 0 S 3S} \\\ \end{aligned}
Ksp=[Al3+][OH-]3{{\text{K}}_{\text{sp}}}\text{=}\left[ \text{A}{{\text{l}}^{\text{3+}}} \right]{{\left[ \text{O}{{\text{H}}^{\text{-}}} \right]}^{\text{3}}}
Since we know that the Al(OH)3\text{Al(OH}{{\text{)}}_{\text{3}}} is prepared in 0.2 M NaOH\text{0}\text{.2 M NaOH}solution. We know that theNaOH\text{NaOH} dissociates in solution.
NaOHNa++OH-\text{NaOH}\to \text{N}{{\text{a}}^{+}}+\text{O}{{\text{H}}^{\text{-}}}
one mole NaOH\text{NaOH}of gives one mole of Na+\text{N}{{\text{a}}^{+}} the one mole of OH-\text{O}{{\text{H}}^{\text{-}}}oh as shown below;

& \text{ NaOH}\to \text{N}{{\text{a}}^{+}}+\text{O}{{\text{H}}^{\text{-}}} \\\ & Before\text{ 0}\text{.2M 0 0} \\\ & After\text{ 0 0}\text{.2M 0}\text{.2M} \\\ \end{aligned}$$ Thus we can say that$$\text{0}\text{.2 M NaOH}$$results in the formation of $$\text{0}\text{.2M}$$ $$\text{N}{{\text{a}}^{+}}$$ and $\text{O}{{\text{H}}^{\text{-}}}$ Therefore, the concentration $\text{O}{{\text{H}}^{\text{-}}}$ for$$\text{NaOH}$$is $$\text{0}\text{.2 M}$$. Now, let us find out the total concentration of $\text{O}{{\text{H}}^{\text{-}}}$ in the solution. $$\text{Total con}\text{.of O}{{\text{H}}^{\text{-}}}\text{=concentration of O}{{\text{H}}^{\text{-}}}\text{ from Al(OH}{{\text{)}}_{\text{3}}}\text{+concentration of O}{{\text{H}}^{\text{-}}}\text{ in NaOH}$$ $\left[ \text{O}{{\text{H}}^{\text{-}}} \right]=3S+0.2$ The molar solubility of a solute is equal to the number of moles of solute dissolved per liter of the solution after the solution has reached the point of saturation. It is obtained from the solubility product.its unit is mol/L or M. Let's substitute the value for the concentration of hydroxide in the equation of $${{\text{K}}_{\text{sp}}}$$$${{\text{K}}_{\text{sp}}}\text{=}\left[ \text{A}{{\text{l}}^{\text{3+}}} \right]{{\left[ \text{O}{{\text{H}}^{\text{-}}} \right]}^{\text{3}}}$$ $${{\text{K}}_{\text{sp}}}\text{=(S)(}3S+0.2{{)}^{3}}$$ Since, $\text{S0}\text{.2M}$, the S term can be neglected. Therefore we get, $$\begin{aligned} & \text{=}\left( S \right){{\left( 0.2 \right)}^{\text{3}}} \\\ & =(S)(0.08) \\\ & =0.08S \\\ \end{aligned}$$ Since we know that$${{\text{K}}_{\text{sp}}}=2.4\times {{10}^{-24}}$$ $$\begin{aligned} & 2.4\times {{10}^{-24}}=0.08S \\\ & S=\frac{2.4\times {{10}^{-24}}}{0.08} \\\ & S=3.0\times {{10}^{-22}} \\\ \end{aligned}$$ Therefore molar solubility(S) of $\text{Al(OH}{{\text{)}}_{\text{3}}}$is $$3.0\times {{10}^{-22}}$$. **Hence, the correct option is (D)** **Note:** Remember that the molar solubility (S) is very low as compared to the concentration of the solution. Therefore neglect the term S for simplification. The solubility product is not the same as that of molar solubility. Solubility is the amount dissolved in solution but molar solubility is no solute dissolved per liter of solution.