Solveeit Logo

Question

Question: What is the min value of? $asin^2\theta + bsin(\theta)+ccos^2\theta$...

What is the min value of?

asin2θ+bsin(θ)+ccos2θasin^2\theta + bsin(\theta)+ccos^2\theta

Answer

The minimum value depends on the values of a, b, and c.

Explanation

Solution

To find the minimum value of the expression asin2θ+bsin(θ)+ccos2θasin^2\theta + bsin(\theta)+ccos^2\theta, we first rewrite the expression in terms of a single trigonometric function. We know the identity cos2θ=1sin2θ\cos^2\theta = 1 - \sin^2\theta.

Substitute this into the given expression: f(θ)=asin2θ+bsinθ+c(1sin2θ)f(\theta) = a\sin^2\theta + b\sin\theta + c(1 - \sin^2\theta) f(θ)=asin2θ+bsinθ+ccsin2θf(\theta) = a\sin^2\theta + b\sin\theta + c - c\sin^2\theta f(θ)=(ac)sin2θ+bsinθ+cf(\theta) = (a-c)\sin^2\theta + b\sin\theta + c

Let x=sinθx = \sin\theta. Since θ\theta is a real angle, the value of sinθ\sin\theta is restricted to the interval [1,1][-1, 1]. So, x[1,1]x \in [-1, 1]. The expression becomes a quadratic function in xx: g(x)=(ac)x2+bx+c,for x[1,1]g(x) = (a-c)x^2 + bx + c, \quad \text{for } x \in [-1, 1]

This is a quadratic function Ax2+Bx+CAx^2 + Bx + C where A=(ac)A = (a-c), B=bB = b, and C=cC = c. The minimum value of a quadratic function over a closed interval depends on the coefficient of the x2x^2 term (which determines if the parabola opens upwards or downwards) and the position of the vertex relative to the interval.

Let's analyze the cases:

  1. Case 1: ac=0    a=ca-c = 0 \implies a=c The expression simplifies to a linear function: g(x)=bx+cg(x) = bx + c.

    • If b>0b > 0, the function is increasing, so the minimum value occurs at x=1x = -1. Minimum value = b(1)+c=cbb(-1) + c = c-b.
    • If b<0b < 0, the function is decreasing, so the minimum value occurs at x=1x = 1. Minimum value = b(1)+c=c+bb(1) + c = c+b.
    • If b=0b = 0, the function is a constant: g(x)=cg(x) = c. Minimum value = cc.
  2. Case 2: ac0a-c \neq 0 This is a parabola. The x-coordinate of the vertex is xv=b2(ac)x_v = -\frac{b}{2(a-c)}.

    • Subcase 2.1: ac>0a-c > 0 (Parabola opens upwards) The function has a global minimum at the vertex.

      • If the vertex xvx_v lies within the interval [1,1][-1, 1] (i.e., 1b2(ac)1-1 \le -\frac{b}{2(a-c)} \le 1), the minimum value is g(xv)g(x_v). Minimum value = cb24(ac)c - \frac{b^2}{4(a-c)}.
      • If the vertex xv<1x_v < -1, the function is increasing on [1,1][-1, 1], so the minimum value occurs at x=1x = -1. Minimum value = g(1)=(ac)(1)2+b(1)+c=acb+c=abg(-1) = (a-c)(-1)^2 + b(-1) + c = a-c-b+c = a-b.
      • If the vertex xv>1x_v > 1, the function is decreasing on [1,1][-1, 1], so the minimum value occurs at x=1x = 1. Minimum value = g(1)=(ac)(1)2+b(1)+c=ac+b+c=a+bg(1) = (a-c)(1)^2 + b(1) + c = a-c+b+c = a+b.
    • Subcase 2.2: ac<0a-c < 0 (Parabola opens downwards) The function has a global maximum at the vertex. The minimum value will occur at one of the endpoints of the interval [1,1][-1, 1]. We need to compare g(1)g(-1) and g(1)g(1). g(1)=abg(-1) = a-b g(1)=a+bg(1) = a+b

      • If b>0b > 0, then ab<a+ba-b < a+b. So, the minimum value is aba-b.
      • If b<0b < 0, then ab>a+ba-b > a+b. So, the minimum value is a+ba+b.
      • If b=0b = 0, then ab=a+b=aa-b = a+b = a. So, the minimum value is aa.

As shown by these cases, the minimum value of the expression is not a single numerical value or a simple algebraic expression independent of a,b,ca, b, c. It depends entirely on the specific values of the constants a,b,a, b, and cc.

The question asks for "the min value of?" without providing specific values for a,b,ca, b, c. Therefore, a general closed-form expression is not possible.

Explanation of the solution: The expression asin2θ+bsin(θ)+ccos2θasin^2\theta + bsin(\theta)+ccos^2\theta is transformed into a quadratic in sinθsin\theta by substituting cos2θ=1sin2θcos^2\theta = 1 - sin^2\theta. Let x=sinθx = sin\theta, so x[1,1]x \in [-1, 1]. The expression becomes f(x)=(ac)x2+bx+cf(x) = (a-c)x^2 + bx + c. The minimum value of this quadratic function on the interval [1,1][-1, 1] depends on the coefficients a,b,ca, b, c. Specifically, it depends on whether the parabola opens upwards or downwards, and whether its vertex falls within or outside the interval [1,1][-1, 1]. Due to these dependencies, a single general expression for the minimum value cannot be provided without specific values or relationships for a,b,ca, b, c.