Solveeit Logo

Question

Mathematics Question on Applications of Derivatives

What is the maximum value of the function sin x + cos x?

Answer

Let f(x) = sin x + cos x

=f'(x)=cos x-sinx

f'(x)=0=sinx=cos x=tanx=1=π4,5π4\frac{\pi}{4},\frac{5\pi}{4}....,

f''(x)=-sinx-cos x=-(sinx+cos x)

Now, f×\times(x) will be negative when (sin x + cos x) is positive i.e., when sin x and cos x are both positive. Also, we know that sin x and cos x both are positive in the first

quadrant. Then, f×\times(x) will be negative when x∈(0,π2\frac{\pi}{2}).

Thus, we consider x=π4\frac{\pi}{4}.

f×\times(π4\frac{\pi}{4})=-(sin π4\frac{\pi}{4}+cos π4\frac{\pi}{4})=-(22\frac{2}{\sqrt2})=2<0-\sqrt2<0

∴ By the second derivative test, f will be the maximum at x=π/4. and the maximum value of f is f(π4\frac{\pi}{4})=sin π4\frac{\pi}{4}.+cos π4\frac{\pi}{4}=12×12\frac{1}{\sqrt2}\times \frac{1}{\sqrt2}=22\frac{2}{\sqrt2}=2\sqrt2