Solveeit Logo

Question

Question: What is the maximum value of \({\text{sin3}}\theta\ {\text{cos2}}\theta \,{\text{ + }}\,{\text{cos3}...

What is the maximum value of sin3θ cos2θ + cos3θ sin2θ{\text{sin3}}\theta\ {\text{cos2}}\theta \,{\text{ + }}\,{\text{cos3}}\theta\ {\text{sin2}}\theta ?

Explanation

Solution

Hint – In order to solve this problem use the formula of sin (a + b) and apply the same in the given equation and proceed to get the highest value of the term.

Complete step-by-step solution -
The given equation is sin3θ cos2θ + cos3θ sin2θ{\text{sin3}}\theta\ {\text{cos2}}\theta \,{\text{ + }}\,{\text{cos3}}\theta\ {\text{sin2}}\theta .
As we know sin(a+b)=sinacosb+cosasinb\sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b
Putting the values a=3θand b=2θa = 3\theta \,{\text{and }}b = 2\theta in above equation we get the above equation as

sin(a+b)=sinacosb+cosasinb sin(3θ+2θ)=sin3θcos2θ+cos3θsin2θ sin(5θ)=sin3θcos2θ+cos3θsin2θ  \Rightarrow \sin \left( {a + b} \right) = \sin a\cos b + \cos a\sin b \\\ \Rightarrow \sin (3\theta + 2\theta ) = \sin 3\theta \cos 2\theta + \cos 3\theta \sin 2\theta \\\ \Rightarrow \sin (5\theta ) = \sin 3\theta \cos 2\theta + \cos 3\theta \sin 2\theta \\\

Therefore considering sin3θcos2θ+cos3θsin2θ\sin 3\theta \cos 2\theta + \cos 3\theta \sin 2\theta or sin(5θ)\sin (5\theta ) will be the same.
So the maximum value of sin(5θ)\sin (5\theta ) is 1. As the maximum value of sin function is 1.
So, the correct option is A.

Note – To solve this problem we need to think that what other can be used in place of sin3θ cos2θ + cos3θ sin2θ{\text{sin3}}\theta\ {\text{cos2}}\theta \,{\text{ + }}\,{\text{cos3}}\theta\ {\text{sin2}}\theta and by which formula to get the answer in the easiest way. Then we have to use the values of sin since its highest value is 1 and lowest is -1. Doing this will solve your problem.