Solveeit Logo

Question

Question: What is the maximum mass of \({\text{Al}}\) (molar mass \(27{\text{ g/mol}}\)) that can be obtained ...

What is the maximum mass of Al{\text{Al}} (molar mass 27 g/mol27{\text{ g/mol}}) that can be obtained from 20.4 g20.4{\text{ g}} of Al2O3{\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}} (molar mass 102 g/mol102{\text{ g/mol}})?
A) 2.70 g2.70{\text{ g}}
B) 5.40 g5.40{\text{ g}}
C) 8.10 g8.10{\text{ g}}
D) 10.8 g10.8{\text{ g}}
E) 16.3 g16.3{\text{ g}}

Explanation

Solution

To solve this we must first write the correct balanced chemical equation for the conversion of Al2O3{\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}} to Al{\text{Al}}. From the balanced chemical equation, we can know the number of moles of both Al2O3{\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}} and Al{\text{Al}} and thus, we can calculate the mass of Al{\text{Al}}.

Complete solution:
We know that Al2O3{\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}} when heated decomposes to form Al{\text{Al}} and oxygen gas is released. The decomposition reaction of Al2O3{\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}} is as follows:
2Al2O34Al+3O2{\text{2A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}} \to 4{\text{Al}} + 3{{\text{O}}_2}
From the balanced chemical equation we can see that two moles of Al2O3{\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}} decompose and produce four moles of Al{\text{Al}}. Thus,
2 mol Al2O3=4 mol Al{\text{2 mol A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}} = 4{\text{ mol Al}}
1 mol Al2O3=2 mol Al{\text{1 mol A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}} = 2{\text{ mol Al}}
We know that the number of moles of any substance is the ratio of its mass to molar mass. Thus,
Number of moles(mol)=Mass(g)Molar mass(g/mol){\text{Number of moles}}\left( {{\text{mol}}} \right) = \dfrac{{{\text{Mass}}\left( {\text{g}} \right)}}{{{\text{Molar mass}}\left( {{\text{g/mol}}} \right)}}
Rearrange the equation for the mass as follows:
Mass(g)=Number of moles(mol)×Molar mass(g/mol){\text{Mass}}\left( {\text{g}} \right) = {\text{Number of moles}}\left( {{\text{mol}}} \right) \times {\text{Molar mass}}\left( {{\text{g/mol}}} \right)
Calculate the mass of Al2O3{\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}} in 1 mol{\text{1 mol}} of Al2O3{\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}} using the equation as follows:
Mass of Al2O3=1 mol×102 g/mol{\text{Mass of A}}{{\text{l}}_2}{{\text{O}}_3} = 1{\text{ mol}} \times 102{\text{ g/mol}}
Mass of Al2O3=102 g{\text{Mass of A}}{{\text{l}}_2}{{\text{O}}_3} = 102{\text{ g}}
Thus, the mass of Al2O3{\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}} in 1 mol{\text{1 mol}} of Al2O3{\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}} is 102 g102{\text{ g}}.
Calculate the mass of Al{\text{Al}} in 2 mol{\text{2 mol}} of Al{\text{Al}} using the equation as follows:
Mass of Al=2 mol×27 g/mol{\text{Mass of Al}} = 2{\text{ mol}} \times 27{\text{ g/mol}}
Mass of Al=54 g{\text{Mass of Al}} = 54{\text{ g}}
Thus, the mass of Al{\text{Al}} in 2 mol{\text{2 mol}} of Al{\text{Al}} is 54 g54{\text{ g}}.
Thus, 102 g102{\text{ g}} of Al2O3{\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}} produces 54 g54{\text{ g}} of Al{\text{Al}}. Thus, the mass of Al{\text{Al}} produced by 20.4 g20.4{\text{ g}} of Al2O3{\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}} is,
Mass of Al=20.4 g Al2O3×54 g Al102 g Al2O3{\text{Mass of Al}} = 20.4{\text{ g A}}{{\text{l}}_2}{{\text{O}}_3} \times \dfrac{{54{\text{ g Al}}}}{{102{\text{ g A}}{{\text{l}}_2}{{\text{O}}_3}}}
Mass of Al=10.8 g{\text{Mass of Al}} = 10.8{\text{ g}}
Thus, the maximum mass of Al{\text{Al}} that can be obtained from 20.4 g20.4{\text{ g}} of Al2O3{\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}} is 10.8 g10.8{\text{ g}}.

Thus, the correct option is (D) 10.8 g10.8{\text{ g}}.

Note: Remember that the balanced chemical equation for the decomposition of Al2O3{\text{A}}{{\text{l}}_{\text{2}}}{{\text{O}}_{\text{3}}} must be written correctly. Incorrect or unbalanced chemical equations can lead to an incorrect number of moles which can lead to incorrect mass of the element.