Solveeit Logo

Question

Question: What is the maximum acceleration of the particle doing the SHM \(y = 2\sin\left\lbrack \frac{\pi t}{...

What is the maximum acceleration of the particle doing the SHM y=2sin[πt2+φ]y = 2\sin\left\lbrack \frac{\pi t}{2} + \varphi \right\rbrackwhere 2 is in cm

A

π2cm/s2\frac{\pi}{2}cm/s^{2}

B

π22cm/s2\frac{\pi^{2}}{2}cm/s^{2}

C

π4cm/s2\frac{\pi}{4}cm/s^{2}

D

π4cm/s2\frac{\mathbf{\pi}}{\mathbf{4}}\mathbf{cm/}\mathbf{s}^{\mathbf{2}}

Answer

π22cm/s2\frac{\pi^{2}}{2}cm/s^{2}

Explanation

Solution

Comparing given equation with standard equation,

y=asin(ωt+φ),y = a\sin(\omega t + \varphi), we get, a=2cm,a = 2cm, ω=π2\omega = \frac{\pi}{2}

Amax=ω2A=(π2)2×2\therefore A_{\max} = \omega^{2}A = \left( \frac{\pi}{2} \right)^{2} \times 2 =π22cm/s2= \frac{\pi^{2}}{2}cm/s^{2}.