Solveeit Logo

Question

Question: What is the mass of one mole of electrons?...

What is the mass of one mole of electrons?

Explanation

Solution

Hint: One mole is equal to 6.02214179 !!×!! 1023\text{6}\text{.02214179 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{23}}} atoms, or other elementary units such as molecules.

Step by step solution:
1 electron weighs approximately 9.11 !!×!! 10-31Kg\text{1 electron weighs approximately 9}\text{.11 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{-31}}}\text{Kg}
1 mole weighs X Kg\text{1 mole weighs X Kg}
1 mole is 6.022×1023particles\text{1 mole is 6}\text{.022}\times \text{1}{{\text{0}}^{\text{23}}}\text{particles}
So, we put 6.022 !!×!! 1023\text{6}\text{.022 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{23}}}in the equation instead.
X = 9.11 !!×!! 10-31 × 1 !!×!! 6.022 !!×!! 1023= 5.48 !!×!! 10-7 Kg\text{X = 9}\text{.11 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{-31}}}\text{ }\times \text{ 1 }\\!\\!\times\\!\\!\text{ 6}\text{.022 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{23}}}\text{= 5}\text{.48 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{-7}}}\text{ Kg}
Mass of 6.02214076 !!×!! 1023\text{6}\text{.02214076 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{23}}} electrons = 548.1 !!μ!! g\text{= 548}\text{.1 }\\!\\!\mu\\!\\!\text{ g}

Additional Information:
We should know that mole in chemistry is the standard scientific unit which can be used for measuring large quantities of very small entities for example atoms, molecules or other specified particles.
The Avogadro constant is the proportionality factor that relates the number of constituent particles in a sample with the amount of substance in that sample.
The mass of the electron is 11836\dfrac{1}{1836}th the mass of a proton.
The number of moles in a given sample of an element or compound can be calculated by dividing the total mass of the sample by the molar mass of the element or compound.
The mass of 1 mole of an element will be equal to its atomic mass in grams.
For all: Mole = MassMolar Mass \text{Mole = }\dfrac{\text{Mass}}{\text{Molar Mass}}\text{ }
For gases: Mole = VolumeMolar Volume \text{Mole = }\dfrac{\text{Volume}}{\text{Molar Volume}}\text{ } (here molar volume is 24.0 dm3\text{24}\text{.0 d}{{\text{m}}^{\text{3}}} at r.t.p and 22.4 dm3\text{22}\text{.4 d}{{\text{m}}^{\text{3}}} at S.T.P)

For solutions:
Concentration (g / dm3) = mass (g)volume (dm3) \text{Concentration }\left( \text{g / d}{{\text{m}}^{\text{3}}} \right)\text{ = }\dfrac{\text{mass }\left( \text{g} \right)}{\text{volume }\left( \text{d}{{\text{m}}^{\text{3}}} \right)}\text{ }
Concentration (mole / dm3) = molevolume (dm3) \text{Concentration }\left( \text{mole / d}{{\text{m}}^{\text{3}}} \right)\text{ = }\dfrac{\text{mole}}{\text{volume }\left( \text{d}{{\text{m}}^{\text{3}}} \right)}\text{ }
Concentration (g / dm3) = Concentration (mole / dm3) !!×!! molar mass\text{Concentration }\left( \text{g / d}{{\text{m}}^{\text{3}}} \right)\text{ = Concentration }\left( \text{mole / d}{{\text{m}}^{\text{3}}} \right)\text{ }\\!\\!\times\\!\\!\text{ molar mass}

Note: The number 6.02214076 !!×!! 1023\text{6}\text{.02214076 }\\!\\!\times\\!\\!\text{ 1}{{\text{0}}^{\text{23}}} was chosen so that the mass of one mole of a chemical compound in grams is numerically equal to the average mass of one molecule of the compound, in Daltons. This number is also known as Avogadro number.