Solveeit Logo

Question

Question: What is the limit as \(x\) approaches infinity of \(\ln \left( x \right)\)?...

What is the limit as xx approaches infinity of ln(x)\ln \left( x \right)?

Explanation

Solution

For solving these types of questions you should know that the \infty is not a value, so we take it as xx approaching infinity. And we should keep it always positive infinity because negative infinity’s logarithm is undefined for real numbers, since the natural logarithm function is undefined for negative numbers.

Complete step by step solution:
In this question it is given that xx approaches infinity. SO, it is clear that the limit must be positive because x>ln(x)>0x>\ln \left( x \right)>0. By the properties of ln\ln , it is clear that,
ln(x2)ln(x1)=ln(x2x1)\ln \left( {{x}_{2}} \right)-\ln \left( {{x}_{1}} \right)=\ln \left( \dfrac{{{x}_{2}}}{{{x}_{1}}} \right)
So, if x2>x1{{x}_{2}}>{{x}_{1}}, the difference is positive, so the value of ln(x)\ln \left( x \right) is always growing. If we consider,
limxln(x)=M\displaystyle \lim_{x \to \infty }\ln \left( x \right)=M,
Then, limxln(x)=MR\displaystyle \lim_{x \to \infty }\ln \left( x \right)=M\in R,
And we have, ln(x)<Mx<eM\ln \left( x \right) < M \Rightarrow x < {{e}^{M}}.
But the value of xx \to \infty .
So, MM cannot be in the RR and the limits of this must be ++\infty . Or if we see the mathematical calculation for this, then,
limxln(x)=\displaystyle \lim_{x \to \infty }\ln \left( x \right)=\infty .
To see this, we will use the lnx=1x1tdt\ln x=\int\limits_{1}^{x}{\dfrac{1}{t}dt} and by the property:
abf(t)dt=acf(t)dt+cbf(t)dt\int\limits_{a}^{b}{f\left( t \right)dt}=\int\limits_{a}^{c}{f\left( t \right)dt}+\int\limits_{c}^{b}{f\left( t \right)dt}
If on [a,b]\left[ a,b \right] we have f(t)mf\left( t \right)\ge m
Then, abf(t)dt(ba).m\int\limits_{a}^{b}{f\left( t \right)dt}\ge \left( b-a \right).m
If we look at the intervals of [2n,2n+1]\left[ {{2}^{n}},{{2}^{n+1}} \right] form, then, on [1,2]\left[ 1,2 \right], we have 1t12\dfrac{1}{t}\ge \dfrac{1}{2}, so here,
121tdt(21).12 121tdt=12 \begin{aligned} & \int\limits_{1}^{2}{\dfrac{1}{t}dt\ge \left( 2-1 \right).\dfrac{1}{2}} \\\ & \Rightarrow \int\limits_{1}^{2}{\dfrac{1}{t}dt}=\dfrac{1}{2} \\\ \end{aligned}
So, ln212\ln 2\ge \dfrac{1}{2}
And on [2,4]\left[ 2,4 \right], we have 1t14\dfrac{1}{t}\ge \dfrac{1}{4}, so,
141tdt=121tdt+241tdt12+(42).14 141tdt=12+12=1 \begin{aligned} & \int\limits_{1}^{4}{\dfrac{1}{t}dt=\int\limits_{1}^{2}{\dfrac{1}{t}dt}+\int\limits_{2}^{4}{\dfrac{1}{t}dt}\ge \dfrac{1}{2}+\left( 4-2 \right).\dfrac{1}{4}} \\\ & \Rightarrow \int\limits_{1}^{4}{\dfrac{1}{t}dt}=\dfrac{1}{2}+\dfrac{1}{2}=1 \\\ \end{aligned}
And, ln422=1\ln 4\ge \dfrac{2}{2}=1
So, on every [2n,2n+1]\left[ {{2}^{n}},{{2}^{n+1}} \right], we have the values 1t12n+1\dfrac{1}{t}\ge \dfrac{1}{{{2}^{n}}+1}.So, the integral 2n2n+11tdt\int\limits_{{{2}^{n}}}^{{{2}^{n+1}}}{\dfrac{1}{t}dt} adds more than,
(2n+12n).12n+1=[2n(21)].12n+1=2n2n+1=12\left( {{2}^{n+1}}-{{2}^{n}} \right).\dfrac{1}{{{2}^{n+1}}}=\left[ {{2}^{n}}\left( 2-1 \right) \right].\dfrac{1}{{{2}^{n+1}}}=\dfrac{{{2}^{n}}}{{{2}^{n+1}}}=\dfrac{1}{2}
And so, ln(2n+1)=2n2n+11tdtn+12\ln \left( {{2}^{n+1}} \right)=\int\limits_{{{2}^{n}}}^{{{2}^{n+1}}}{\dfrac{1}{t}dt\ge \dfrac{n+1}{2}}
So, if xx \to \infty , we have 1x1tdt\int\limits_{1}^{x}{\dfrac{1}{t}dt\to \infty }.
Since this integral is lnx\ln x, we have limxln(x)=\displaystyle \lim_{x \to \infty }\ln \left( x \right)=\infty .

Thus, the limit as xx approaches infinity of ln(x)\ln \left( x \right) is infinity.

Note: In this question we have to assume only positive infinite value, we cannot assume the negative infinite value. And on every 2n,2n+1{{2}^{n,}}{{2}^{n+1}} values of a and b, the ln(x)\ln \left( x \right) function must be approaching to positive infinite. On every positive value of a and b, the ln(x)\ln \left( x \right) will be xx\to \infty .