Solveeit Logo

Question

Mathematics Question on cartesian products of sets

What is the least value of k such that the function x2^2 + kx + 1 is strictly increasing on (1,2)

A

1

B

-1

C

2

D

-2

Answer

-2

Explanation

Solution

Let f(x) = x2^2 + kx + 1 f '(x) = 2x + k f(x) is strictly increasing on (1, 2) if f '(x) > 0 for x \in (1, 2) \Rightarrow 2x + k > 0 for x \in (1, 2) \Rightarrow k > -2x for x \in??(1, 2) Now, 1 < x < 2 \Rightarrow 2 < 2x < 4 \Rightarrow -2 > -2x > -4 \Rightarrow - 4 < -2x < -2 k2\Rightarrow \, \, k \ge \, \, -2 Hence least value of k = -2.