Solveeit Logo

Question

Question: What is the Laplace transform of \[t\cos at + \sin at\]?...

What is the Laplace transform of tcosat+sinatt\cos at + \sin at?

Explanation

Solution

To find the Laplace transform of tcosat+sinatt\cos at + \sin at, we will use the one of the properties of Laplace transformation i.e., . Using this we will find the Laplace transformation of sinat\sin at and then using this we will find the Laplace transform of tcosatt\cos at and then we will add these two results to find the Laplace transformation of tcosat+sinatt\cos at + \sin at.

Complete step by step answer:
We have to find the Laplace transform of tcosat+sinatt\cos at + \sin at. For this we will use the rule for the Laplace transform of the derivative.
Here, L[f(t)]=F(s)L\left[ {f(t)} \right] = F(s)
Let f(t)=sinat(1)f(t) = \sin at - - - (1)
Putting t=0t = 0, we get
f(0)=sin(0)\Rightarrow f(0) = \sin \left( 0 \right)
On simplification we get,
f(0)=0\Rightarrow f(0) = 0
On differentiating f(t)=sinatf(t) = \sin at, we get
f1(t)=acosat\Rightarrow {f^1}(t) = a\cos at
Putting t=0t = 0, we get
f1(0)=acos(0)\Rightarrow {f^1}(0) = a\cos \left( 0 \right)
On simplification we get,
f1(0)=a\Rightarrow {f^1}(0) = a
Now, on differentiating f1(t)=acosat{f^1}(t) = a\cos at, we get
f(t)=a2sinat(2)\Rightarrow {f^{''}}(t) = - {a^2}\sin at - - - (2)
Using (1)(1) in (2)(2), we get
f(t)=a2f(t)\Rightarrow {f^{''}}(t) = - {a^2}f(t)
Taking the Laplace transformation of both the sides we get
L[f(t)]=L[a2f(t)](3)\Rightarrow L\left[ {{f^{''}}(t)} \right] = L\left[ { - {a^2}f(t)} \right] - - - (3)
We know L[f(t)]=s2F(s)sf(0)f(0)L\left[ {f'\left( t \right)} \right] = {s^2}F\left( s \right) - sf\left( 0 \right) - f'\left( 0 \right) . Using this we can write (3)(3) as
s2F(s)sf(0)f1(0)=L[a2f(t)](4)\Rightarrow {s^2}F(s) - sf(0) - {f^1}(0) = L\left[ { - {a^2}f(t)} \right] - - - (4)
As L[k×f(t)]=kL[f(t)]L\left[ {k \times f(t)} \right] = kL\left[ {f(t)} \right], where kk is a constant.
Therefore, we can write (4)(4) as
s2F(s)sf(0)f1(0)=a2L[f(t)]\Rightarrow {s^2}F(s) - sf(0) - {f^1}(0) = - {a^2}L\left[ {f(t)} \right]
Putting the value of f(0)f(0), f1(0){f^1}(0) and L[f(t)]=F(s)L\left[ {f(t)} \right] = F(s), we get
s2F(s)0a=a2F(s)\Rightarrow {s^2}F(s) - 0 - a = - {a^2}F(s)
On rearranging we get
s2F(s)+a2F(s)=a\Rightarrow {s^2}F(s) + {a^2}F(s) = a
Taking F(s)F(s) common from the left hand side of the above equation, we get
(s2+a2)F(s)=a\Rightarrow \left( {{s^2} + {a^2}} \right)F(s) = a
Dividing both the sides by (s2+a2)\left( {{s^2} + {a^2}} \right), we get
F(s)=a(s2+a2)\Rightarrow F(s) = \dfrac{a}{{\left( {{s^2} + {a^2}} \right)}}
L[sinat]=a(s2+a2)(5)\therefore L\left[ {\sin at} \right] = \dfrac{a}{{\left( {{s^2} + {a^2}} \right)}} - - - (5)
Similarly, now suppose that we let f(t)=tcosat(6)f(t) = t\cos at - - - (6)
Putting t=0t = 0, we get
f(0)=(0)×cos(0)f(0) = \left( 0 \right) \times \cos \left( 0 \right)
On simplification we get
f(0)=0\Rightarrow f(0) = 0
On differentiating f(t)=tcosatf(t) = t\cos at using the product rule of differentiation, we get
f1(t)=(t)(asinat)+(1)(cosat)\Rightarrow {f^1}(t) = \left( t \right)\left( { - a\sin at} \right) + \left( 1 \right)\left( {\cos at} \right)
On simplification we get
f1(t)=atsinat+cosat\Rightarrow {f^1}(t) = - at\sin at + \cos at
Again, on differentiating we get
f(t)=(at)(acosat)+(a)(sinat)asinat\Rightarrow {f^{''}}(t) = \left( { - at} \right)\left( {a\cos at} \right) + \left( { - a} \right)\left( {\sin at} \right) - a\sin at
On simplification we get
f(t)=a2tcosat2asinat\Rightarrow {f^{''}}(t) = - {a^2}t\cos at - 2a\sin at
Using (6)(6), we can write
f(t)=a2f(t)2asinat(7)\Rightarrow {f^{''}}(t) = - {a^2}f(t) - 2a\sin at - - - (7)
Putting t=0t = 0, we get
f(0)=a2f(0)2asin(0)\Rightarrow {f^{''}}(0) = - {a^2}f(0) - 2a\sin \left( 0 \right)
On simplification we get
f(0)=0\Rightarrow {f^{''}}(0) = 0
On taking Laplace transformation of (7)(7), we get
L[f(t)]=L[a2f(t)2asinat]\Rightarrow L\left[ {{f^{''}}(t)} \right] = L\left[ { - {a^2}f(t) - 2a\sin at} \right]
As Laplace transform satisfy the linear property, so we can write the above equation as
L[f(t)]=a2L[f(t)]2aL[sinat]\Rightarrow L\left[ {{f^{''}}(t)} \right] = - {a^2}L\left[ {f(t)} \right] - 2aL\left[ {\sin at} \right]
Above we have proved that L[sinat]=a(s2+a2)L\left[ {\sin at} \right] = \dfrac{a}{{\left( {{s^2} + {a^2}} \right)}}. Using this and putting the value of L[f(t)]L\left[ {{f^{''}}(t)} \right] and L[f(t)]L\left[ {f(t)} \right], we get
s2F(s)sf(0)f1(0)=a2F(s)2a×as2+a2\Rightarrow {s^2}F(s) - sf(0) - {f^1}(0) = - {a^2}F(s) - 2a \times \dfrac{a}{{{s^2} + {a^2}}}
Putting the value of f(0)f(0) and f1(0){f^1}(0), we get
s2F(s)01=a2F(s)2a2s2+a2\Rightarrow {s^2}F(s) - 0 - 1 = - {a^2}F(s) - \dfrac{{2{a^2}}}{{{s^2} + {a^2}}}
On simplification, we get
s2F(s)1=a2F(s)2a2s2+a2\Rightarrow {s^2}F(s) - 1 = - {a^2}F(s) - \dfrac{{2{a^2}}}{{{s^2} + {a^2}}}
On rearranging we get
s2F(s)+a2F(s)=12a2s2+a2\Rightarrow {s^2}F(s) + {a^2}F(s) = 1 - \dfrac{{2{a^2}}}{{{s^2} + {a^2}}}
On simplification and taking common, we get
F(s)(s2+a2)=s2+a22a2s2+a2\Rightarrow F(s)\left( {{s^2} + {a^2}} \right) = \dfrac{{{s^2} + {a^2} - 2{a^2}}}{{{s^2} + {a^2}}}
On further simplification we get
F(s)(s2+a2)=s2a2s2+a2\Rightarrow F(s)\left( {{s^2} + {a^2}} \right) = \dfrac{{{s^2} - {a^2}}}{{{s^2} + {a^2}}}
Dividing both the sides by (s2+a2)\left( {{s^2} + {a^2}} \right) we get
F(s)=s2a2(s2+a2)2\Rightarrow F(s) = \dfrac{{{s^2} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}
L[tcosat]=s2a2(s2+a2)2(8)\therefore L\left[ {t\cos at} \right] = \dfrac{{{s^2} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}} - - - (8)
Adding (5)(5) and (8)(8), we get
L[sinat]+L[tcosat]=a(s2+a2)+s2a2(s2+a2)2\Rightarrow L\left[ {\sin at} \right] + L\left[ {t\cos at} \right] = \dfrac{a}{{\left( {{s^2} + {a^2}} \right)}} + \dfrac{{{s^2} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}
On simplifying we get
L[sinat]+L[tcosat]=a(s2+a2)+(s2a2)(s2+a2)2\Rightarrow L\left[ {\sin at} \right] + L\left[ {t\cos at} \right] = \dfrac{{a\left( {{s^2} + {a^2}} \right) + \left( {{s^2} - {a^2}} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}
On further simplification, we get
L[sinat]+L[tcosat]=as2+s2+a3a2(s2+a2)2\Rightarrow L\left[ {\sin at} \right] + L\left[ {t\cos at} \right] = \dfrac{{a{s^2} + {s^2} + {a^3} - {a^2}}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}
On taking common,
L[sinat]+L[tcosat]=s2(a+1)+a2(a1)(s2+a2)2\Rightarrow L\left[ {\sin at} \right] + L\left[ {t\cos at} \right] = \dfrac{{{s^2}\left( {a + 1} \right) + {a^2}\left( {a - 1} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}
On rewriting we get
L[tcosat+sinat]=s2(a+1)+a2(a1)(s2+a2)2\Rightarrow L\left[ {t\cos at + \sin at} \right] = \dfrac{{{s^2}\left( {a + 1} \right) + {a^2}\left( {a - 1} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}.

Therefore, the Laplace transform of tcosat+sinatt\cos at + \sin at is s2(a+1)+a2(a1)(s2+a2)2\dfrac{{{s^2}\left( {a + 1} \right) + {a^2}\left( {a - 1} \right)}}{{{{\left( {{s^2} + {a^2}} \right)}^2}}}.

Note: Laplace transform is an integral transform that converts a function of a real variable to a function of a complex variable. Laplace transform satisfy the linear property i.e., L[f(t)+g(t)]=L[f(t)]+L[g(t)]L\left[ {f\left( t \right) + g\left( t \right)} \right] = L\left[ {f\left( t \right)} \right] + L\left[ {g\left( t \right)} \right].