Solveeit Logo

Question

Question: What is the integral of \({{\tan }^{2}}\left( x \right)\sec \left( x \right)\) ?...

What is the integral of tan2(x)sec(x){{\tan }^{2}}\left( x \right)\sec \left( x \right) ?

Explanation

Solution

Here we will use some standard equations to solve. We know that the integral of secx\sec x is ln(sec(x)+tan(x))\ln \left( \left| \sec \left( x \right)+\tan \left( x \right) \right| \right) .
From trigonometry we have tan2x=sec2x1{{\tan }^{2}}x={{\sec }^{2}}x-1 .
The Integration by parts is given by uv=uvduv\int{uv=u\int{v-\int{du\int{v}}}} .
Using the above results, we will find the integral.

Complete step by step answer:
We have been given that
tan2(x)sec(x){{\tan }^{2}}\left( x \right)\sec \left( x \right)
To write the integral of given function.
We will assume the value of function is equal to II and then solve further:
I=(tan2(x)sec(x))dxI=\int{\left( {{\tan }^{2}}\left( x \right)\sec \left( x \right) \right)}dx …(1)
From the trigonometric identity we have tan2x=sec2x1{{\tan }^{2}}x={{\sec }^{2}}x-1 thus substituting this value in equation (1), we get:
I=(sec2x1)secxdxI=\int{\left( {{\sec }^{2}}x-1 \right)\sec xdx} …(2)
Now multiply secx\sec x to both the terms of bracket from equation (2), we get:
I=(sec3xsecx)dxI=\int{\left( {{\sec }^{3}}x-\sec x \right)dx}
sec3xdxsecxdx\Rightarrow \int{{{\sec }^{3}}xdx-\int{\sec xdx}} …(3)
Now we know that the integral of secx\sec x is ln(sec(x)+tan(x))\ln \left( \left| \sec \left( x \right)+\tan \left( x \right) \right| \right) therefore applying that to equation (3) we get:
I=sec3xdxln(sec(x)+tan(x))I=\int{{{\sec }^{3}}xdx-\ln \left( \left| \sec \left( x \right)+\tan \left( x \right) \right| \right)} …(4)
Now we will find the integral of sec3x{{\sec }^{3}}x by applying integration of parts in which let us consider u=secx,v=sec2xu=\sec x,v={{\sec }^{2}}x
Therefore, we can write integral of sec3x{{\sec }^{3}}x as shown below:
sec3xdx=(secx)(sec2x)dx\int{{{\sec }^{3}}xdx=\int{\left( \sec x \right)}}\left( {{\sec }^{2}}x \right)dx …(5)
Now apply integration by parts uv=uvduv\int{uv=u\int{v-\int{du\int{v}}}} to equation (5) we get:
sec3xdx=secxtanxtanx(secxtanx)dx secxtanxtan2x(secx)dx \begin{aligned} & \int{{{\sec }^{3}}xdx=\sec x\tan x-\int{\tan x\left( \sec x\tan x \right)dx}} \\\ & \Rightarrow \sec x\tan x-\int{{{\tan }^{2}}x\left( \sec x \right)dx} \\\ \end{aligned}
Now once again we use the trigonometric identity tan2x=sec2x1{{\tan }^{2}}x={{\sec }^{2}}x-1 for the above equation, we get:
secxtanxsecx(sec2x1)dx\Rightarrow \sec x\tan x-\int{\sec x\left( {{\sec }^{2}}x-1 \right)dx} ….(6)
Now multiply the terms in equation (6) we get:
secxtanx(sec3xdxsecxdx)\Rightarrow \sec x\tan x-\left( \int{{{\sec }^{3}}xdx-\int{\sec xdx}} \right) …(7)
Now we know that the integral of secx\sec x is ln(sec(x)+tan(x))\ln \left( \left| \sec \left( x \right)+\tan \left( x \right) \right| \right) therefore using this in equation (7) we get:
secxtanxsec3xdx+ln(sec(x)+tan(x))\Rightarrow \sec x\tan x-\int{{{\sec }^{3}}xdx}+\ln \left( \left| \sec \left( x \right)+\tan \left( x \right) \right| \right) …(8)
Now we can transfer the term sec3xdx\int{{{\sec }^{3}}xdx} to the right-hand side in equation (8) we get:
sec3xdx+sec3xdx=secxtanx+ln(sec(x)+tan(x)) 12(secxtanx+ln(sec(x)+tan(x))) \begin{aligned} & \int{{{\sec }^{3}}xdx}+\int{{{\sec }^{3}}xdx}=\sec x\tan x+\ln \left( \left| \sec \left( x \right)+\tan \left( x \right) \right| \right) \\\ & \Rightarrow \dfrac{1}{2}\left( \sec x\tan x+\ln \left( \left| \sec \left( x \right)+\tan \left( x \right) \right| \right) \right) \\\ \end{aligned}
Now substituting this value in equation (4) we have:
I=12(secxtanx+ln(sec(x)+tan(x)))ln(sec(x)+tan(x))I=\dfrac{1}{2}\left( \sec x\tan x+\ln \left( \left| \sec \left( x \right)+\tan \left( x \right) \right| \right) \right)-\ln \left( \left| \sec \left( x \right)+\tan \left( x \right) \right| \right)
Thus, on solving we have the integral of tan2(x)sec(x){{\tan }^{2}}\left( x \right)\sec \left( x \right) is given by:
tan2xsecxdx=I=12(secxtanxln(sec(x)+tan(x)))+c\int{{{\tan }^{2}}x\sec xdx=I=\dfrac{1}{2}\left( \sec x\tan x-\ln \left( \left| \sec \left( x \right)+\tan \left( x \right) \right| \right) \right)+c}

Note: We can find the integral of secx\sec x by using the integration by parts which can be as shown below:
secxdx\int{\sec xdx}
We multiply and divide by the term secx+tanxsecx+tanx\dfrac{\sec x+\tan x}{\sec x+\tan x} and then we select therefore we can write:
secxsecx+tanxsecx+tanxdx sec2x+secxtanxsecx+tanxdx \begin{aligned} & \int{\sec x\dfrac{\sec x+\tan x}{\sec x+\tan x}dx} \\\ & \Rightarrow \int{\dfrac{{{\sec }^{2}}x+\sec x\tan x}{\sec x+\tan x}dx} \\\ \end{aligned}
u=secx+tanx,du=secxtanx+sec2xdu,v=1u=\sec x+\tan x,du=\sec x\tan x+{{\sec }^{2}}xdu,v=1 we get the new expression as :
duu\int{\dfrac{du}{u}}
We know the integral of duu\int{\dfrac{du}{u}} is lnu+c\ln \left| u \right|+c
Therefore, we have:
secxdx=lnsecx+tanx+c\int{\sec xdx}=\ln \left| \sec x+\tan x \right|+c