Solveeit Logo

Question

Question: What is the integral of \( {\sin ^4}\left( x \right).{\cos ^2}\left( x \right) \) ?...

What is the integral of sin4(x).cos2(x){\sin ^4}\left( x \right).{\cos ^2}\left( x \right) ?

Explanation

Solution

Hint : To find the integral of sin4(x).cos2(x){\sin ^4}\left( x \right).{\cos ^2}\left( x \right) , we have to write sin4x{\sin ^4}x as (sin2xsin2x)\left( {{{\sin }^2}x \cdot {{\sin }^2}x} \right) and then take sin2(x)cos2(x){\sin ^2}\left( x \right) \cdot {\cos ^2}\left( x \right) as one term and sin2(x){\sin ^2}\left( x \right) as one term. Now, use the formula sin2θ=1cos2θ2{\sin ^2}\theta = \dfrac{{1 - \cos 2\theta }}{2} and sin2θ2=sinθcosθ\dfrac{{\sin 2\theta }}{2} = \sin \theta \cos \theta and then on simplifying the expression again use the formula sin2θ=1cos2θ2{\sin ^2}\theta = \dfrac{{1 - \cos 2\theta }}{2} . Now, the integral is in simple form and can be easily solved.

Complete step by step solution:
In this question, we have to find the integral of sin4(x).cos2(x){\sin ^4}\left( x \right).{\cos ^2}\left( x \right) .
sin4(x).cos2(x)dx\int {{{\sin }^4}\left( x \right).{{\cos }^2}\left( x \right)dx} - - - - - - - - - (1)
Here, we can write sin4x{\sin ^4}x as (sin2xsin2x)\left( {{{\sin }^2}x \cdot {{\sin }^2}x} \right) . Therefore, equation (1) becomes
sin4(x).cos2(x)dx=sin2(x)sin2(x)cos2(x)dx\Rightarrow \int {{{\sin }^4}\left( x \right).{{\cos }^2}\left( x \right)dx} = \int {{{\sin }^2}\left( x \right) \cdot {{\sin }^2}\left( x \right) \cdot {{\cos }^2}\left( x \right)dx} - - - - - - (2)
Now, take sin2(x)cos2(x){\sin ^2}\left( x \right) \cdot {\cos ^2}\left( x \right) as one term and sin2(x){\sin ^2}\left( x \right) as one term. Therefore, equation (2) becomes
sin4(x).cos2(x)dx=sin2x(sinxcosx)2dx\Rightarrow \int {{{\sin }^4}\left( x \right).{{\cos }^2}\left( x \right)dx} = \int {{{\sin }^2}x \cdot {{\left( {\sin x \cdot \cos x} \right)}^2}dx} - - - - - - - (3)
Now, here we need to use some trigonometric formulas to simplify the expression.
We know that, cos2θ=12sin2θ\cos 2\theta = 1 - 2{\sin ^2}\theta .
cos2θ1=2sin2θ sin2θ=1cos2θ2   \Rightarrow \cos 2\theta - 1 = - 2{\sin ^2}\theta \\\ \Rightarrow {\sin ^2}\theta = \dfrac{{1 - \cos 2\theta }}{2} \;
And sin2θ=2sinθcosθ\sin 2\theta = 2\sin \theta \cos \theta
sin2θ2=sinθcosθ\Rightarrow \dfrac{{\sin 2\theta }}{2} = \sin \theta \cos \theta
Therefore, using this relations, our equation (3) becomes
sin4(x).cos2(x)dx=(1cos2x)2(sin2x2)2dx\Rightarrow \int {{{\sin }^4}\left( x \right).{{\cos }^2}\left( x \right)dx} = \int {\dfrac{{\left( {1 - \cos 2x} \right)}}{2} \cdot {{\left( {\dfrac{{\sin 2x}}{2}} \right)}^2}dx}
Taking the constant terms out of the integral sign, we get
sin4(x).cos2(x)dx=18(1cos2x)sin22xdx\Rightarrow \int {{{\sin }^4}\left( x \right).{{\cos }^2}\left( x \right)dx} = \dfrac{1}{8}\int {\left( {1 - \cos 2x} \right){{\sin }^2}2xdx} - - - - - - - (4)
Here, again sin22x=1cos4x2{\sin ^2}2x = \dfrac{{1 - \cos 4x}}{2} . Therefore, equation (4) becomes
sin4(x).cos2(x)dx=18(1cos2x)(1cos4x2)dx\Rightarrow \int {{{\sin }^4}\left( x \right).{{\cos }^2}\left( x \right)dx} = \dfrac{1}{8}\int {\left( {1 - \cos 2x} \right)\left( {\dfrac{{1 - \cos 4x}}{2}} \right)dx} - - - - - - (5)
Taking 2 out of integral sign, equation (5) becomes
sin4(x).cos2(x)dx=116(1cos2x)(1cos4x)dx\Rightarrow \int {{{\sin }^4}\left( x \right).{{\cos }^2}\left( x \right)dx} = \dfrac{1}{{16}}\int {\left( {1 - \cos 2x} \right)\left( {1 - \cos 4x} \right)dx}
Now, opening the brackets, we get
sin4(x).cos2(x)dx=116(1cos4xcos2x+cos2xcos4x)dx\Rightarrow \int {{{\sin }^4}\left( x \right).{{\cos }^2}\left( x \right)dx} = \dfrac{1}{{16}}\int {\left( {1 - \cos 4x - \cos 2x + \cos 2x \cdot \cos 4x} \right)dx} - - - - - - - - (6)
Now, we have the formula 2cosxcosy=cos(xy)+cos(x+y)2\cos x\cos y = \cos \left( {x - y} \right) + \cos \left( {x + y} \right) .
cosxcosy=12[cos(xy)+cos(x+y)]\Rightarrow \cos x\cos y = \dfrac{1}{2}\left[ {\cos \left( {x - y} \right) + \cos \left( {x + y} \right)} \right]
Therefore, cos4xcos2x\cos 4x \cdot \cos 2x can be written as 12[cos2x+cos6x]\dfrac{1}{2}\left[ {\cos 2x + \cos 6x} \right] .
Therefore, equation (6) will become
sin4(x).cos2(x)dx=116(1cos4xcos2x+12(cos2x+cos6x))dx\Rightarrow \int {{{\sin }^4}\left( x \right).{{\cos }^2}\left( x \right)dx} = \dfrac{1}{{16}}\int {\left( {1 - \cos 4x - \cos 2x + \dfrac{1}{2}\left( {\cos 2x + \cos 6x} \right)} \right)dx}
Now, separating all the terms, we get
sin4(x).cos2(x)dx=116[1dxcos4xdxcos2xdx+12cos2xdx+12cos6xdx]\Rightarrow \int {{{\sin }^4}\left( x \right).{{\cos }^2}\left( x \right)dx} = \dfrac{1}{{16}}\left[ {\int {1 \cdot dx - \int {\cos 4xdx} } - \int {\cos 2xdx + \dfrac{1}{2}\int {\cos 2xdx + \dfrac{1}{2}\int {\cos 6xdx} } } } \right]

=116[xsin4x4sin2x2+12sin2x2+12sin6x6] =116[xsin4x4sin2x2+sin2x4+sin6x12] =116[xsin4x4sin2x4+sin6x12]   = \dfrac{1}{{16}}\left[ {x - \dfrac{{\sin 4x}}{4} - \dfrac{{\sin 2x}}{2} + \dfrac{1}{2}\dfrac{{\sin 2x}}{2} + \dfrac{1}{2}\dfrac{{\sin 6x}}{6}} \right] \\\ = \dfrac{1}{{16}}\left[ {x - \dfrac{{\sin 4x}}{4} - \dfrac{{\sin 2x}}{2} + \dfrac{{\sin 2x}}{4} + \dfrac{{\sin 6x}}{{12}}} \right] \\\ = \dfrac{1}{{16}}\left[ {x - \dfrac{{\sin 4x}}{4} - \dfrac{{\sin 2x}}{4} + \dfrac{{\sin 6x}}{{12}}} \right] \;

This is our final answer. Therefore, sin4(x).cos2(x)dx=116[xsin4x4sin2x4+sin6x12]\int {{{\sin }^4}\left( x \right).{{\cos }^2}\left( x \right)dx} = \dfrac{1}{{16}}\left[ {x - \dfrac{{\sin 4x}}{4} - \dfrac{{\sin 2x}}{4} + \dfrac{{\sin 6x}}{{12}}} \right] .
So, the correct answer is “ 116[xsin4x4sin2x4+sin6x12]\dfrac{1}{{16}}\left[ {x - \dfrac{{\sin 4x}}{4} - \dfrac{{\sin 2x}}{4} + \dfrac{{\sin 6x}}{{12}}} \right] .”.

Note : We cannot directly integrate trigonometric functions with power greater than 1 as there is no direct formula for it. We have to use the relations and formulas to simplify the expression so that we can integrate it easily. So, while finding the integral of trigonometric functions with power greater than 1, always look for the relations that can be used to simplify the expression.