Solveeit Logo

Question

Question: What is the integral of \({\sin ^2}\left( x \right){\cos ^4}\left( x \right)\) ?...

What is the integral of sin2(x)cos4(x){\sin ^2}\left( x \right){\cos ^4}\left( x \right) ?

Explanation

Solution

Generally, the integrals are classified into two types, definite integral and indefinite integral: a definite integral contains upper and lower limits whereas an indefinite integral does not contain upper and lower limits.
Here, we are given an indefinite integral and we are asked to calculate the value ofsin2(x)cos4(x)dx\int {{{\sin }^2}\left( x \right){{\cos }^4}\left( x \right)} dx
Formula to be used:
Some formulae that we need to apply in the solution are as follows.
cos2θ=12sin2θ\cos 2\theta = 1 - 2{\sin ^2}\theta
cos2θ=2cos2θ1\cos 2\theta = 2{\cos ^2}\theta - 1
1cos2θ=sin22θ1 - {\cos ^2}\theta = {\sin ^2}2\theta
dx=x+C\int {dx} = x + C
cosxdx=sinx+C\int {\cos xdx = } \sin x + C
xndx=xn+1n+1+C\int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C

Complete step by step answer:
First, let us simplify sin2(x)cos4(x){\sin ^2}\left( x \right){\cos ^4}\left( x \right)
We know that cos2x=12sin2x\cos 2x = 1 - 2{\sin ^2}x
2sin2x=1cos2x\Rightarrow 2{\sin ^2}x = 1 - \cos 2x
sin2x=1cos2x2\Rightarrow {\sin ^2}x = \dfrac{{1 - \cos 2x}}{2} …………(1)\left( 1 \right)
Also, we have cos2x=2cos2x1\cos 2x = 2{\cos ^2}x - 1
cos2x+1=2cos2x\Rightarrow \cos 2x + 1 = 2{\cos ^2}x
cos2x=cos2x+12\Rightarrow {\cos ^2}x = \dfrac{{\cos 2x + 1}}{2} ………..(2)\left( 2 \right)
Now, we shall substitute the equations(1)\left( 1 \right)and(2)\left( 2 \right)in sin2(x)cos4(x){\sin ^2}\left( x \right){\cos ^4}\left( x \right)
Thus, sin2(x)cos4(x)=1cos2x2(cos2x+12)2{\sin ^2}\left( x \right){\cos ^4}\left( x \right) = \dfrac{{1 - \cos 2x}}{2}{\left( {\dfrac{{\cos 2x + 1}}{2}} \right)^2}
=12×4(1cos2x)(1+cos2x)(1+cos2x)= \dfrac{1}{{2 \times 4}}\left( {1 - \cos 2x} \right)\left( {1 + \cos 2x} \right)\left( {1 + \cos 2x} \right)
=18(1cos22x)(1+cos2x)= \dfrac{1}{8}\left( {1 - {{\cos }^2}2x} \right)\left( {1 + \cos 2x} \right)
Now, we shall apply 1cos2θ=sin22θ1 - {\cos ^2}\theta = {\sin ^2}2\theta .
Thus, we get sin2(x)cos4(x)=18sin22x(1+cos2x){\sin ^2}\left( x \right){\cos ^4}\left( x \right) = \dfrac{1}{8}{\sin ^2}2x\left( {1 + \cos 2x} \right)
=18sin22x+18sin22xcos2x= \dfrac{1}{8}{\sin ^2}2x + \dfrac{1}{8}{\sin ^2}2x\cos 2x
Now, we shall apply the integral on both sides.
The addition rule of indefinite integral states that the sum of two functions is the sum of the So, we need to apply the addition rule.
sin2(x)cos4(x)dx=(18sin22x+18sin22xcos2x)dx\int {{{\sin }^2}\left( x \right){{\cos }^4}\left( x \right)} dx = \int {\left( {\dfrac{1}{8}{{\sin }^2}2x + \dfrac{1}{8}{{\sin }^2}2x\cos 2x} \right)} dx
=18sin22xdx+18sin22xcos2xdx= \dfrac{1}{8}\int {{{\sin }^2}2xdx + \dfrac{1}{8}\int {{{\sin }^2}2x\cos 2x} } dx …………..(3)\left( 3 \right)
Let us consider I1=18sin22xdx{I_1} = \dfrac{1}{8}\int {{{\sin }^2}} 2xdx andI2=18sin22xcos2xdx{I_2} = \dfrac{1}{8}\int {{{\sin }^2}} 2x\cos 2xdx, then we need to solve them separately.
I1=18sin22xdx{I_1} = \dfrac{1}{8}\int {{{\sin }^2}} 2xdx
Now, we shall applysin2x=1cos2x2{\sin ^2}x = \dfrac{{1 - \cos 2x}}{2}
I1=181cos2(2x)2dx\Rightarrow {I_1} = \dfrac{1}{8}\int {\dfrac{{1 - \cos 2\left( {2x} \right)}}{2}} dx
I1=181cos4x2dx\Rightarrow {I_1} = \dfrac{1}{8}\int {\dfrac{{1 - \cos 4x}}{2}} dx
I1=18×12(1cos4x)dx\Rightarrow {I_1} = \dfrac{1}{8} \times \dfrac{1}{2}\int {\left( {1 - \cos 4x} \right)} dx
I1=116[dxcos4xdx]\Rightarrow {I_1} = \dfrac{1}{{16}}\left[ {\int {dx - \int {\cos 4xdx} } } \right]
Now, we need to apply the formulaedx=x+C\int {dx} = x + C andcosxdx=sinx+C\int {\cos xdx = } \sin x + C
I1=116[xsin4x4]+C1\Rightarrow {I_1} = \dfrac{1}{{16}}\left[ {x - \dfrac{{\sin 4x}}{4}} \right] + {C_1} where C1{C_1} is the constant of integration………………..(4)\left( 4 \right)
ConsiderI2=18sin22xcos2xdx{I_2} = \dfrac{1}{8}\int {{{\sin }^2}} 2x\cos 2xdx
I2=18(cos2x)sin22xdx{I_2} = \dfrac{1}{8}\int {\left( {\cos 2x} \right){{\sin }^2}} 2xdx
Let t=sin2xt = \sin 2x
Now, differentiate t=sin2xt = \sin 2xwith respect toxx.
dt=2cos2xdxdt = 2\cos 2xdx
cos2xdx=dt2\Rightarrow \cos 2xdx = \dfrac{{dt}}{2}
Now, I2=18(cos2x)sin22xdx{I_2} = \dfrac{1}{8}\int {\left( {\cos 2x} \right){{\sin }^2}} 2xdxbecomes,
I2=18t2dt2{I_2} = \dfrac{1}{8}\int {{t^2}\dfrac{{dt}}{2}}
I2=18×12t2dt\Rightarrow {I_2} = \dfrac{1}{8} \times \dfrac{1}{2}\int {{t^2}dt}
I2=116t2dt\Rightarrow {I_2} = \dfrac{1}{{16}}\int {{t^2}dt}
I2=116×t33+C2\Rightarrow {I_2} = \dfrac{1}{{16}} \times \dfrac{{{t^3}}}{3} + {C_2} (Here we have appliedxndx=xn+1n+1+C\int {{x^n}} dx = \dfrac{{{x^{n + 1}}}}{{n + 1}} + C)
I2=116×sin32x3+C2\Rightarrow {I_2} = \dfrac{1}{{16}} \times \dfrac{{{{\sin }^3}2x}}{3} + {C_2} whereC2{C_2} is the constant of integration ….(5)\left( 5 \right)
Now, we shall substitute the equations(4)\left( 4 \right) and (5)\left( 5 \right)in the equation(3)\left( 3 \right).
sin2(x)cos4(x)dx=116[xsin4x4]+116×sin32x3+C\int {{{\sin }^2}\left( x \right){{\cos }^4}\left( x \right)} dx = \dfrac{1}{{16}}\left[ {x - \dfrac{{\sin 4x}}{4}} \right] + \dfrac{1}{{16}} \times \dfrac{{{{\sin }^3}2x}}{3} + C whereCC is the constant of integration.
=x16sin4x64+sin32x48+C= \dfrac{x}{{16}} - \dfrac{{\sin 4x}}{{64}} + \dfrac{{{{\sin }^3}2x}}{{48}} + C
Hence, sin2(x)cos4(x)dx=x16sin4x64+sin32x48+C\int {{{\sin }^2}\left( x \right){{\cos }^4}\left( x \right)} dx = \dfrac{x}{{16}} - \dfrac{{\sin 4x}}{{64}} + \dfrac{{{{\sin }^3}2x}}{{48}} + C

Note:
We all know that differentiation is the process of finding the derivation of the functions whereas process integration is to find the antiderivative of a function and hence, these two processes are said to be inverse to each other. That means, integration is the inverse process of differentiation and also known as the anti-differentiation.