Solveeit Logo

Question

Question: What is the integral of sec(x)?...

What is the integral of sec(x)?

Explanation

Solution

Here, we multiply the given function by secx+tanxsecx+tanx\dfrac{{\sec x + \tan x}}{{\sec x + \tan x}} which is same as multiplying by11. Also we, will use logarithmic derivative which isduu=lnu\dfrac{{du}}{u} = \ln |u|. We will also use cosx=1secx\cos x = \dfrac{1}{{\sec x}}. And we have trigonometry identity used in our solution, which is, sin2x+cos2x=1{\sin ^2}x + {\cos ^2}x = 1.

Complete answer: Here, given that,
sec(x)dx\int {\sec (x)dx}
Multiplying sec(x) bysecx+tanxsecx+tanx\dfrac{{\sec x + \tan x}}{{\sec x + \tan x}}, which is really the same as multiplying by 1.
Thus, we have,
=secx(secx+tanxsecx+tanx)dx= \int {\sec x(\dfrac{{\sec x + \tan x}}{{\sec x + \tan x}})} dx
Simplify the given expression, we get,
=secx(secx+tanx)(secx+tanx)dx= \int {\dfrac{{\sec x(\sec x + \tan x)}}{{(\sec x + \tan x)}}dx}
Removing the brackets, we get,
=sec2x+secxtanxsecx+tanxdx= \int {\dfrac{{{{\sec }^2}x + \sec x\tan x}}{{\sec x + \tan x}}} dx
Let us substitute the value of secx+tanx\sec x + \tan xas u.
i.e. u=secx+tanxu = \sec x + \tan x
Then,
du=(secxtanx+sec2x)dxdu = (\sec x\tan x + {\sec ^2}x)dx
Rearranging the given expression, we get,
du=(sec2x+secxtanx)dxdu = ({\sec ^2}x + \sec x\tan x)dx
Thus,
duu=lnu\dfrac{{du}}{u} = \ln |u|
This, is called logarithmic derivative:
Now, integrating both the sides, we get,
duu=lnu+C\int {\dfrac{{du}}{u} = \ln |u| + C}
Here, replace the u with x.
Now substituting the values of u in the above integral function, we get,
secxdx=ln(secx+tanx)+C\int {\sec xdx = \ln (\sec x + \tan x) + C}
Other methods to solve this integration, we can do the following.
1cosxdx\int {\dfrac{1}{{\cos x}}dx}
Multiply with cos x in both numerator and denominator, we get,

=1cosx×cosxcosxdx =cosxcos2xdx  = \int {\dfrac{1}{{\cos x}} \times \dfrac{{\cos x}}{{\cos x}}dx} \\\ = \int {\dfrac{{\cos x}}{{{{\cos }^2}x}}dx} \\\

Since cos2x=1sin2x{\cos ^2}x = 1 - {\sin ^2}x, we get,
=cosx1sin2xdx= \int {\dfrac{{\cos x}}{{1 - {{\sin }^2}x}}dx}
Substituting the values of y, we get,
=11y2dx= \int {\dfrac{1}{{1 - {y^2}}}dx}
Also, 1y2=(1+y)(1y)1 - {y^2} = (1 + y)(1 - y)

=1(1+y)(1y)dx =12(11+y+11y)dx =12(11+y+11y)dx  = \int {\dfrac{1}{{(1 + y)(1 - y)}}dx} \\\ = \int {\dfrac{1}{2}(\dfrac{1}{{1 + y}} + \dfrac{1}{{1 - y}})dx} \\\ = \dfrac{1}{2}\int {(\dfrac{1}{{1 + y}} + \dfrac{1}{{1 - y}})dx} \\\

Rearranging the above integration, we get,

=12(1y+11y1)dx =12[lny+1lny1]+C   = \dfrac{1}{2}\int {(\dfrac{1}{{y + 1}} - \dfrac{1}{{y - 1}})dx} \\\ = \dfrac{1}{2}[\ln |y + 1| - \ln |y - 1|] + C \\\ \\\

This is called logarithmic derivative.

=12[lny+1lny1]+C =12lny+1y1+C  = \dfrac{1}{2}[\dfrac{{\ln |y + 1|}}{{\ln |y - 1|}}] + C \\\ = \dfrac{1}{2}\ln |\dfrac{{y + 1}}{{y - 1}}| + C \\\

Now, substituting the values of y, we get,
=12lnsinx+1sinx1+C= \dfrac{1}{2}\ln |\dfrac{{\sin x + 1}}{{\sin x - 1}}| + C
Further to check if the answer is correct or not, we will do as below.
sinx+1sinx1\dfrac{{\sin x + 1}}{{\sin x - 1}}
Multiply the above expression with sinx+1sinx1\dfrac{{\sin x + 1}}{{\sin x - 1}}, we get,
=sinx+1sinx1×sinx+1sinx+1\dfrac{{\sin x + 1}}{{\sin x - 1}} \times \dfrac{{\sin x + 1}}{{\sin x + 1}}
=(sinx+1)2sin2x1= \dfrac{{{{(\sin x + 1)}^2}}}{{{{\sin }^2}x - 1}}
Since cos2x=1sin2x{\cos ^2}x = 1 - {\sin ^2}x, so using this we get,
=(sinx+1)2cos2x= \dfrac{{{{(\sin x + 1)}^2}}}{{ - {{\cos }^2}x}} --- (i)
Now,
12lnsinx+1sinx1+C\dfrac{1}{2}\ln |\dfrac{{\sin x + 1}}{{\sin x - 1}}| + C
Substituting the (i), we get,
=12ln(sinx+1)2cos2x+C= \dfrac{1}{2}\ln |\dfrac{{{{(\sin x + 1)}^2}}}{{ - {{\cos }^2}x}}| + C
Subtract sign is removed because of the mode used.
=12ln(sinx+1)2cos2x+C= \dfrac{1}{2}\ln |\dfrac{{{{(\sin x + 1)}^2}}}{{{{\cos }^2}x}}| + C
Simplify this we get,

=lnsinx+1cosx+C =lnsinxcosx+1cosx+C  = \ln |\dfrac{{\sin x + 1}}{{\cos x}}| + C \\\ = \ln |\dfrac{{\sin x}}{{\cos x}} + \dfrac{1}{{\cos x}}| + C \\\

Here, sinxcosx=tanx\dfrac{{\sin x}}{{\cos x}} = \tan xand 1cosx=secx\dfrac{1}{{\cos x}} = \sec x
Thus, substituting these values, we get,
=lntanx+secx+C= \ln |\tan x + \sec x| + C

Note:
By taking the derivative of exactly the right function and looking at the results in the right way we got the formula we needed. We can solve this by using partial functions too. Then we need to use y=sinxy = \sin x and dy=cosxdxdy = \cos xdx. One should know derivation before solving integration questions.