Solveeit Logo

Question

Question: What is the integral of \(\int{x{{\sin }^{2}}\left( x \right)dx}\)?...

What is the integral of xsin2(x)dx\int{x{{\sin }^{2}}\left( x \right)dx}?

Explanation

Solution

Use the trigonometric identity sin2x=1cos2x2{{\sin }^{2}}x=\dfrac{1-\cos 2x}{2} and simplify the function inside the integral. Now, break the integral into two parts and for the first part use the formula xndx=xn+1n+1\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1} to find its integral. For the second part use the ILATE rule and consider x as function 1 (f1(x))\left( {{f}_{1}}\left( x \right) \right) and cos2x\cos 2x as function 2 (f2(x))\left( {{f}_{2}}\left( x \right) \right) and apply the rule of integration by parts given as f1(x).f2(x)dx=[f1(x)f2(x)dx][f1(x)f2(x)dx]dx\int{{{f}_{1}}\left( x \right).{{f}_{2}}\left( x \right)dx}=\left[ {{f}_{1}}\left( x \right)\int{{{f}_{2}}\left( x \right)dx} \right]-\int{\left[ {{f}_{1}}'\left( x \right)\int{{{f}_{2}}\left( x \right)dx} \right]dx} to get the answer. Here, f1(x)=ddx(f1(x)){{f}_{1}}'\left( x \right)=\dfrac{d}{dx}\left( {{f}_{1}}\left( x \right) \right). Use the formulas cos(ax+b)dx=sin(ax+b)a\int{\cos \left( ax+b \right)dx}=\dfrac{\sin \left( ax+b \right)}{a} and sin(ax+b)dx=cos(ax+b)a\int{\sin \left( ax+b \right)dx}=\dfrac{-\cos \left( ax+b \right)}{a} to evaluate the integral.

Complete step by step answer:
Here we are asked to find the integral of the function xsin2(x)x{{\sin }^{2}}\left( x \right). First let us simplify the trigonometric function using the half angle formula. Let us assume the integral as I, so we have,
I=xsin2(x)dx\Rightarrow I=\int{x{{\sin }^{2}}\left( x \right)dx}
Using the half angle trigonometric identity given as sin2x=1cos2x2{{\sin }^{2}}x=\dfrac{1-\cos 2x}{2} we get,
I=x(1cos2x2)dx\Rightarrow I=\int{x\left( \dfrac{1-\cos 2x}{2} \right)dx}
Since, 2 is a constant so it can be taken out of the integral sign, we have,
I=12(xxcos2x)dx\Rightarrow I=\dfrac{1}{2}\int{\left( x-x\cos 2x \right)dx}
Breaking the integral into two parts we get,
I=12(xdxxcos2xdx)\Rightarrow I=\dfrac{1}{2}\left( \int{xdx}-\int{x\cos 2xdx} \right)
Using the formula xndx=xn+1n+1\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1} for the integral of the first term we get,

& \Rightarrow I=\dfrac{1}{2}\left( \dfrac{{{x}^{1+1}}}{1+1}-\int{x\cos 2xdx} \right) \\\ & \Rightarrow I=\dfrac{1}{2}\left( \dfrac{{{x}^{2}}}{2}-\int{x\cos 2xdx} \right) \\\ \end{aligned}$$ Clearly we can see that in the second part we have a product of an algebraic function and a trigonometric function so we need to apply integration by parts to find the integral. Now, according to the ILATE rule we have to assume x as the function 1 $\left( {{f}_{1}}\left( x \right) \right)$ and $\cos 2x$ as function 2 $\left( {{f}_{2}}\left( x \right) \right)$. Here, ILATE stands for: - I – Inverse trigonometric function L – Logarithmic function A – Algebraic function T – Trigonometric function E – Exponential function The numbering of the functions is done according to the order of appearance in the above list. Therefore assuming x as function 1 $\left( {{f}_{1}}\left( x \right) \right)$ and $\cos 2x$ as function 2 $\left( {{f}_{2}}\left( x \right) \right)$we have the formula $\int{{{f}_{1}}\left( x \right).{{f}_{2}}\left( x \right)dx}=\left[ {{f}_{1}}\left( x \right)\int{{{f}_{2}}\left( x \right)dx} \right]-\int{\left[ {{f}_{1}}'\left( x \right)\int{{{f}_{2}}\left( x \right)dx} \right]dx}$ to calculate the integral of product of two functions. So we get, $$\begin{aligned} & \Rightarrow I=\dfrac{1}{2}\left[ \dfrac{{{x}^{2}}}{2}-\left\\{ x\int{\cos 2xdx}-\int{\left( \left( \int{\cos 2xdx} \right)\times \dfrac{d\left( x \right)}{dx} \right)dx} \right\\} \right] \\\ & \Rightarrow I=\dfrac{1}{2}\left[ \dfrac{{{x}^{2}}}{2}-\left\\{ x\int{\cos 2xdx}-\int{\left( \left( \int{\cos 2xdx} \right) \right)dx} \right\\} \right] \\\ \end{aligned}$$ Using the formula $$\int{\cos \left( ax+b \right)dx}=\frac{\sin \left( ax+b \right)}{a}$$ we get, $$\begin{aligned} & \Rightarrow I=\dfrac{1}{2}\left[ \dfrac{{{x}^{2}}}{2}-\left\\{ x\left( \dfrac{\sin 2x}{2} \right)-\int{\dfrac{\sin 2x}{2}dx} \right\\} \right] \\\ & \Rightarrow I=\dfrac{1}{2}\left[ \dfrac{{{x}^{2}}}{2}-\left\\{ x\left( \dfrac{\sin 2x}{2} \right)-\dfrac{1}{2}\int{\sin 2xdx} \right\\} \right] \\\ \end{aligned}$$ Using the formula $$\int{\sin \left( ax+b \right)dx}=\dfrac{-\cos \left( ax+b \right)}{a}$$ we get, $$\begin{aligned} & \Rightarrow I=\dfrac{1}{2}\left[ \dfrac{{{x}^{2}}}{2}-\left\\{ x\left( \dfrac{\sin 2x}{2} \right)-\dfrac{1}{2}\left( \dfrac{-\cos 2x}{2} \right) \right\\} \right] \\\ & \therefore I=\dfrac{1}{2}\left[ \dfrac{{{x}^{2}}}{2}+\dfrac{x\sin 2x}{2}-\dfrac{\cos 2x}{4} \right]+c \\\ \end{aligned}$$ Here ‘c’ is the constant of integration as we are evaluating an indefinite integral. **Note:** Note that we cannot apply the ILATE rule and integration by parts directly in the function $$x{{\sin }^{2}}\left( x \right)$$ because we don’t have any direct formula for the integration of the function ${{\sin }^{2}}x$ so it must be converted into $\cos 2x$ using the half angle formula. Also, remember that you cannot apply the formula $\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}$ for n = -1 because in that case we have the function $\dfrac{1}{x}$ whose integral is $\ln x$.