Solveeit Logo

Question

Question: What is the integral of \[\int {{{\tan }^3}\left( x \right)dx} \] ?...

What is the integral of tan3(x)dx\int {{{\tan }^3}\left( x \right)dx} ?

Explanation

Solution

Hint : Here in this question given an Indefinite integral, we have to find the integrated value of the given trigonometric function. This can be solved by the substitution method and later integrated by using the standard trigonometric formula of integration. And by further simplification we get the required solution.

Complete step by step solution:
Integration is the inverse process of differentiation. An integral which is not having any upper and lower limit is known as an indefinite integral.
Consider the given function.
tan3(x)dx\Rightarrow \int {{{\tan }^3}\left( x \right)dx}
It can be rewritten as:
tan2(x)tan(x)dx\Rightarrow \int {{{\tan }^2}\left( x \right)\tan \left( x \right)dx} -------(1)
Now, using the one of the standard identity of trigonometry i.e., tan2(θ)+1=sec2(θ){\tan ^2}\left( \theta \right) + 1 = {\sec ^2}\left( \theta \right)
On rearranging we can also written as: tan2(θ)=sec2(θ)1{\tan ^2}\left( \theta \right) = {\sec ^2}\left( \theta \right) - 1
On substituting tan2(x){\tan ^2}\left( x \right) in equation (1), we have
(sec2(x)1)tan(x)dx\Rightarrow \int {\left( {{{\sec }^2}\left( x \right) - 1} \right)\tan \left( x \right)dx}
(sec2(x)tan(x)tan(x))dx\Rightarrow \int {\left( {{{\sec }^2}\left( x \right)\tan \left( x \right) - \tan \left( x \right)} \right)dx}
Integrate each term with respect to x, then
sec2(x)tan(x)dxtan(x)dx\Rightarrow \int {{{\sec }^2}\left( x \right)\tan \left( x \right)dx} - \int {\tan \left( x \right)dx} ---------(2)
Now, consider
sec2(x)tan(x)dx\Rightarrow \int {{{\sec }^2}\left( x \right)\tan \left( x \right)dx} --------(3)
Apply the Substitution put u=tan(x)u = \tan \left( x \right) then
On differentiating u with respect to x, we get
dudx=sec2(x)\dfrac{{du}}{{dx}} = {\sec ^2}\left( x \right)
Or it can be written as
du=sec2(x)dxdu = {\sec ^2}\left( x \right)dx
Then, Integral (2) becomes
udu\Rightarrow \int {udu}
As we know, integration of xdx=x22+c\int {xdx = \dfrac{{{x^2}}}{2} + c} , then
u22+c1\Rightarrow \dfrac{{{u^2}}}{2} + {c_1}
Substitute the u value, then
tan2(x)2+c1\Rightarrow \dfrac{{{{\tan }^2}\left( x \right)}}{2} + {c_1} ----------(a)
Now, consider
tan(x)dx\Rightarrow \int {\tan \left( x \right)} dx
By the definition tanx=sinxcosx\tan x = \dfrac{{\sin x}}{{\cos x}}, then
sin(x)cos(x)dx\Rightarrow \int {\dfrac{{\sin \left( x \right)}}{{\cos \left( x \right)}}} dx -----------(4)
By substitution method, put v=cos(x)v = \cos \left( x \right) . Then
On differentiating v with respect to x, we get
dvdx=sin(x)\dfrac{{dv}}{{dx}} = \sin \left( x \right)
Or it can be written as
dv=sin(x)dxdv = \sin \left( x \right)dx
Then, Integral (3) becomes
1vdv\Rightarrow \int {-\dfrac{1}{v}dv}
As we know, integration of 1xdx=lnx+c\int {\dfrac{1}{x}dx = \ln \left| x \right| + c} , then
lnv+c2\Rightarrow \ln \left| v \right| + {c_2}
Substitute the v value, then
lncos(x)+c2\Rightarrow \ln \left| {\cos \left( x \right)} \right| + {c_2} ----------(b)
Substitute equation (a) and (b) in equation (2), then
tan2(x)2+c1+lncos(x)+c2\Rightarrow \dfrac{{{{\tan }^2}\left( x \right)}}{2} + {c_1} + \ln \left| {\cos \left( x \right)} \right| + {c_2}
Where, c1{c_1} and c2{c_2} are integrating constant on adding both we can write CC as integrating constant.
tan2(x)2+lncos(x)+C\Rightarrow \dfrac{{{{\tan }^2}\left( x \right)}}{2} + \ln \left| {\cos \left( x \right)} \right| + C
Hence, it’s a required solution.
So, the correct answer is “ tan2(x)2+lncos(x)+C \dfrac{{{{\tan }^2}\left( x \right)}}{2} + \ln \left| {\cos \left( x \right)} \right| + C ”.

Note : By simplifying the question using the substitution we can integrate the given function easily. If we apply integration directly it may be complicated to solve further. So, simplification is needed. We must know the differentiation and integration formulas. The standard integration formulas for the trigonometric ratios must know.