Question
Question: What is the integral of \(\int{{{\sin }^{2}}\left( 2x \right)dx}\) ?...
What is the integral of ∫sin2(2x)dx ?
Solution
We need to find the integral of the function sin2(2x) . We start to solve the question by simplifying the given function in terms of cosine function using the trigonometric formulae. Then, we evaluate the integral of the simplified function using the integration formulae to get the desired result.
Complete step by step solution:
Let I be the value of the integral for the given function.
⇒I=∫sin2(2x)dx
We are given a function and need to integrate it. We solve this question using the trigonometric formulae to simplify the function and then find the value of I .
According to the question,
The integral of the function sin2(2x) is written as follows,
⇒I=∫sin2(2x)dx
We need to simplify the given trigonometric function.
From trigonometry,
We know that cos(2x)=cos2x−sin2x
Applying the same for the given function, we get,
⇒cos(4x)=cos2(2x)−sin2(2x)
We need to write cos2(2x) in terms of sin2(2x)
From trigonometric identities,
We know that sin2x+cos2x=1
Similarly,
⇒sin2(2x)+cos2(2x)=1
Shifting sin2(2x) to another side of the equation, we get,
⇒cos2(2x)=1−sin2(2x)
Substituting the value of cos2(2x) in cos(4x)=cos2(2x)−sin2(2x) , we get,
⇒cos(4x)=(1−sin2(2x))−sin2(2x)
Simplifying the above equation, we get,
⇒cos(4x)=1−sin2(2x)−sin2(2x)
⇒cos(4x)=1−2sin2(2x)
Finding the value of sin2(2x) from the above equation, we get,
⇒sin2(2x)=2(1−cos(4x))
Substituting the value of sin2(2x) in the integral,
⇒I=∫2(1−cos4x)dx
Taking the value of 21 out of the integral, we get,
⇒I=21∫(1−cos4x)dx
Splitting the integral between the terms, we get,
⇒I=21∫1dx−21∫cos4xdx
From the formulae of integration,
∫1dx=x+c
∫cosax=asinax+c
Similarly,
∫cos4x=4sin4x+c
Substituting the same, we get,
⇒I=(21×x)−21(4sin4x)
Simplifying the above equation, we get,
⇒I=2x−8sin4x+c
Substituting the value of I in the above equation,
∴∫sin2(2x)dx=2x−8sin4x+c
Note: We must know the trigonometric identities and formulae to solve the given question easily. One must always remember that the value of the integral cosax is asinax and not sinax. We should always write the functions sin2(x),cos2(x) in terms of cosine function for easy evaluation of integral.