Solveeit Logo

Question

Question: What is the integral of \(\int{{{\sin }^{2}}\left( 2x \right)dx}\) ?...

What is the integral of sin2(2x)dx\int{{{\sin }^{2}}\left( 2x \right)dx} ?

Explanation

Solution

We need to find the integral of the function sin2(2x){{\sin }^{2}}\left( 2x \right) . We start to solve the question by simplifying the given function in terms of cosine function using the trigonometric formulae. Then, we evaluate the integral of the simplified function using the integration formulae to get the desired result.

Complete step by step solution:
Let II be the value of the integral for the given function.
I=sin2(2x)dx\Rightarrow I=\int{{{\sin }^{2}}\left( 2x \right)}dx
We are given a function and need to integrate it. We solve this question using the trigonometric formulae to simplify the function and then find the value of II .
According to the question,
The integral of the function sin2(2x){{\sin }^{2}}\left( 2x \right) is written as follows,
I=sin2(2x)dx\Rightarrow I=\int{{{\sin }^{2}}\left( 2x \right)}dx
We need to simplify the given trigonometric function.
From trigonometry,
We know that cos(2x)=cos2xsin2x\cos \left( 2x \right)={{\cos }^{2}}x-{{\sin }^{2}}x
Applying the same for the given function, we get,
cos(4x)=cos2(2x)sin2(2x)\Rightarrow \cos \left( 4x \right)={{\cos }^{2}}\left( 2x \right)-{{\sin }^{2}}\left( 2x \right)
We need to write cos2(2x){{\cos }^{2}}\left( 2x \right) in terms of sin2(2x){{\sin }^{2}}\left( 2x \right)
From trigonometric identities,
We know that sin2x+cos2x=1{{\sin }^{2}}x+{{\cos }^{2}}x=1
Similarly,
sin2(2x)+cos2(2x)=1\Rightarrow {{\sin }^{2}}\left( 2x \right)+{{\cos }^{2}}\left( 2x \right)=1
Shifting sin2(2x){{\sin }^{2}}\left( 2x \right) to another side of the equation, we get,
cos2(2x)=1sin2(2x)\Rightarrow {{\cos }^{2}}\left( 2x \right)=1-{{\sin }^{2}}\left( 2x \right)
Substituting the value of cos2(2x){{\cos }^{2}}\left( 2x \right) in cos(4x)=cos2(2x)sin2(2x)\cos \left( 4x \right)={{\cos }^{2}}\left( 2x \right)-{{\sin }^{2}}\left( 2x \right) , we get,
cos(4x)=(1sin2(2x))sin2(2x)\Rightarrow \cos \left( 4x \right)=\left( 1-{{\sin }^{2}}\left( 2x \right) \right)-{{\sin }^{2}}\left( 2x \right)
Simplifying the above equation, we get,
cos(4x)=1sin2(2x)sin2(2x)\Rightarrow \cos \left( 4x \right)=1-{{\sin }^{2}}\left( 2x \right)-{{\sin }^{2}}\left( 2x \right)
cos(4x)=12sin2(2x)\Rightarrow \cos \left( 4x \right)=1-2{{\sin }^{2}}\left( 2x \right)
Finding the value of sin2(2x){{\sin }^{2}}\left( 2x \right) from the above equation, we get,
sin2(2x)=(1cos(4x))2\Rightarrow {{\sin }^{2}}\left( 2x \right)=\dfrac{\left( 1-\cos \left( 4x \right) \right)}{2}
Substituting the value of sin2(2x){{\sin }^{2}}\left( 2x \right) in the integral,
I=(1cos4x)2dx\Rightarrow I=\int{\dfrac{\left( 1-\cos 4x \right)}{2}}dx
Taking the value of 12\dfrac{1}{2} out of the integral, we get,
I=12(1cos4x)dx\Rightarrow I=\dfrac{1}{2}\int{\left( 1-\cos 4x \right)}dx
Splitting the integral between the terms, we get,
I=121dx12cos4xdx\Rightarrow I=\dfrac{1}{2}\int{1}dx-\dfrac{1}{2}\int{\cos 4x}dx
From the formulae of integration,
1dx=x+c\int{1dx=x}+c
cosax=sinaxa+c\int{\cos ax=\dfrac{\sin ax}{a}}+c
Similarly,
cos4x=sin4x4+c\int{\cos 4x=\dfrac{\sin 4x}{4}}+c
Substituting the same, we get,
I=(12×x)12(sin4x4)\Rightarrow I=\left( \dfrac{1}{2}\times x \right)-\dfrac{1}{2}\left( \dfrac{\sin 4x}{4} \right)
Simplifying the above equation, we get,
I=x2sin4x8+c\Rightarrow I=\dfrac{x}{2}-\dfrac{\sin 4x}{8}+c
Substituting the value of II in the above equation,
sin2(2x)dx=x2sin4x8+c\therefore \int{{{\sin }^{2}}\left( 2x \right)dx}=\dfrac{x}{2}-\dfrac{\sin 4x}{8}+c

Note: We must know the trigonometric identities and formulae to solve the given question easily. One must always remember that the value of the integral cosax\cos ax is sinaxa\dfrac{\sin ax}{a} and not sinax\sin ax. We should always write the functions sin2(x),cos2(x){{\sin }^{2}}\left( x \right),{{\cos }^{2}}\left( x \right) in terms of cosine function for easy evaluation of integral.