Solveeit Logo

Question

Question: What is the integral of \( \int{{{\ln }^{2}}\left( x \right)dx} \) ?...

What is the integral of ln2(x)dx\int{{{\ln }^{2}}\left( x \right)dx} ?

Explanation

Solution

Hint : We first discuss the integration by parts method. Integration by parts method is usually used for the multiplication of the functions and their integration. We have to apply the theorem twice. We take u=1,v=ln2xu=1,v={{\ln }^{2}}x for integration ln2(x)dx\int{{{\ln }^{2}}\left( x \right)dx} . Then we take u=1,v=lnxu=1,v=\ln x for integration ln(x)dx\int{\ln \left( x \right)dx} . use the formulas xndx=xn+1n+1+c\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+c , ddx(lnx)=1x\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x} .

Complete step-by-step answer :
We need to find the integration of ln2(x)dx\int{{{\ln }^{2}}\left( x \right)dx} using integration by parts method.
Let’s assume f(x)=g(x)h(x)f\left( x \right)=g\left( x \right)h\left( x \right) .
We need to find the integration of
f(x)dx=g(x)h(x)dx\int{f\left( x \right)dx}=\int{g\left( x \right)h\left( x \right)dx} .
We take u=g(x),v=h(x)u=g\left( x \right),v=h\left( x \right) . This gives f(x)dx=uvdx\int{f\left( x \right)dx}=\int{uvdx} .
The theorem of integration by parts gives
uvdx=uvdx(dudxvdx)dx\int{uvdx}=u\int{vdx}-\int{\left( \dfrac{du}{dx}\int{vdx} \right)dx} .
For our integration ln2(x)dx\int{{{\ln }^{2}}\left( x \right)dx} , we take u=1,v=ln2xu=1,v={{\ln }^{2}}x .
Now we complete the integration
ln2(x)dx=ln2(x)dx(d(ln2(x))dxdx)dx\int{{{\ln }^{2}}\left( x \right)dx}={{\ln }^{2}}\left( x \right)\int{dx}-\int{\left( \dfrac{d\left( {{\ln }^{2}}\left( x \right) \right)}{dx}\int{dx} \right)dx}.
We have the differentiation formula for
u=ln2(x)u={{\ln }^{2}}\left( x \right)
where dudx=ddx(ln2(x))=2lnxx\dfrac{du}{dx}=\dfrac{d}{dx}\left( {{\ln }^{2}}\left( x \right) \right)=\dfrac{2\ln x}{x}
The integration formula for
xndx=xn+1n+1+c\int{{{x}^{n}}dx}=\dfrac{{{x}^{n+1}}}{n+1}+c .
We apply these formulas to complete the integration and get
ln2(x)dx=xln2(x)(2lnxx×x)dx=xln2(x)2lnxdx\int{{{\ln }^{2}}\left( x \right)dx}=x{{\ln }^{2}}\left( x \right)-\int{\left( \dfrac{2\ln x}{x}\times x \right)dx}=x{{\ln }^{2}}\left( x \right)-2\int{\ln xdx}.
We have one more integration part.
To complete that we use again by parts lnxdx=xlnxx\int{\ln xdx}=x\ln x-x .
So, the final form is
ln2(x)dx=xln2(x)2x(lnx1)=x(ln2(x)2lnx+2)\int{{{\ln }^{2}}\left( x \right)dx}=x{{\ln }^{2}}\left( x \right)-2x\left( \ln x-1 \right)=x\left( {{\ln }^{2}}\left( x \right)-2\ln x+2 \right).
Here cc is the integral constant.
Therefore, the integration by parts of ln2(x)dx\int{{{\ln }^{2}}\left( x \right)dx} gives x(ln2(x)2lnx+2)x\left( {{\ln }^{2}}\left( x \right)-2\ln x+2 \right).
So, the correct answer is “x(ln2(x)2lnx+2)x\left( {{\ln }^{2}}\left( x \right)-2\ln x+2 \right)+ C.”.

Note : In case one of two functions are missing and we need to form the by parts method, we will take the multiplying constant 1 as the second function. But we need to remember that we won’t perform by parts by taking u=1u=1 .