Solveeit Logo

Question

Question: What is the integral of \[{e^{{x^3}}}\]?...

What is the integral of ex3{e^{{x^3}}}?

Explanation

Solution

In order to determine the integral of the given exponential function. In mathematics, an integral assigns numbers to functions in a way that describes displacement, area, volume, and other concepts that arise by combining infinitesimal data. The process of finding integrals is called integration.

Complete step by step solution:
We are given the exponential function is ex3dx\int {{e^{{x^3}}}dx}
Now, Let us consider, z=x3z = {x^3}
Differentiating the exponential o ‘z’ with respect to ‘x’ , then

3x2dx=dz dx=dz3x2  \Rightarrow 3{x^2}dx = dz \\\ \Rightarrow dx = \dfrac{{dz}}{{3{x^2}}} \\\

Comparing the exponential function z=xnz = {x^n} with dx=1nz1n1dzdx = \dfrac{1}{n}{z^{\dfrac{1}{n} - 1}}dz, so we can write

dx=13z13dz dx=13z131dz  dx = \dfrac{1}{3}{z^{1 - 3}}dz \\\ dx = \dfrac{1}{3}{z^{\dfrac{1}{3} - 1}}dz \\\

Since, n=3n = 3
Now we can substitute the ‘dx’ and ‘z’ value into the given equation
\int {{e^{{x^3}}}dx} = \int {{e^z}\dfrac{{dz}}{{3{x^2}}}} $$$$\int {{e^{{x^3}}}dx} = \int {{e^z}\dfrac{{dz}}{{3{x^2}}}}
We take the integral limit as 00to \infty , we get
ex3dx=ez13z131dz\int {{e^{{x^3}}}dx} = \int {{e^z}\dfrac{1}{3}{z^{\dfrac{1}{3} - 1}}dz}
ex3dx=0ez13z131dz\int {{e^{{x^3}}}dx} = \int\limits_0^\infty {{e^z}\dfrac{1}{3}{z^{\dfrac{1}{3} - 1}}dz}
Expand the integral values on the exponential function, we can get
ex3dx=13(0ezz131dzzezz131dz)+c\int {{e^{{x^3}}}dx} = \dfrac{1}{3}\left( {\int\limits_0^\infty {{e^z}{z^{\dfrac{1}{3} - 1}}dz - \int\limits_z^\infty {{e^z}{z^{\dfrac{1}{3} - 1}}dz} } } \right) + c
On compare the formula for indefinite integral Γ(n,z)+d\Gamma (n,z) + d with the above derivative equation, the
ex3dx=13Γ(13,x3)+d\int {{e^{{x^3}}}dx} = \dfrac{1}{3}\Gamma (\dfrac{1}{3},{x^3}) + d
Where dd and cc are constant.
Hence, the integral of ex3{e^{{x^3}}}is 13Γ(13,x3)+d\dfrac{1}{3}\Gamma (\dfrac{1}{3},{x^3}) + d.

Additional information:
In integral, there are two types of integrals in maths:

Definite Integral
Indefinite Integral
Definite Integral:
An integral that contains the upper and lower limits then it is a definite integral. On a real line, x is restricted to lie. Riemann Integral is the other name of the Definite Integral.
A definite Integral is represented as:
abf(x)dx\int\limits_a^b {f(x)dx} Indefinite Integral:
Indefinite integrals are defined without upper and lower limits. It is represented as:
f(x)dx=F(x)+C\smallint f(x)dx = F(x) + C
Where C is any constant and the function f(x)f\left( x \right) is called the integrand.

Note:
We can derive the exponential function xn{x^n} as follows
Let the z=xnz = {x^n}
Differentiate with respect to x

dz=nxn1dx dx=1nzn1dz  dz = n{x^{n - 1}}dx \\\ dx = \dfrac{1}{{n{z^{n - 1}}}}dz \\\

We can change the denominator function as a numerator. So, it changed to negative exponential.

dx=1nz(1n)dz dx=1nzn1dz1nz1n1dz  dx = \dfrac{1}{n}{z^{ - (1 - n)}}dz \\\ dx = \dfrac{1}{n}{z^{n - 1}}dz \Rightarrow \dfrac{1}{n}{z^{\dfrac{1}{n} - 1}}dz \\\