Solveeit Logo

Question

Question: What is the integral of \( \dfrac{x}{1+{{x}^{2}}} \) ?...

What is the integral of x1+x2\dfrac{x}{1+{{x}^{2}}} ?

Explanation

Solution

Hint : We first explain the term dydx\dfrac{dy}{dx} where y=f(x)y=f\left( x \right) . We then need to integrate the equationx1+x2dx\int{\dfrac{x}{1+{{x}^{2}}}dx} once to find all the solutions of the differential equation. We take one constant for the integration. We get the equation of a logarithmic function.

Complete step by step solution:
We have to find the integral of the equation x1+x2\dfrac{x}{1+{{x}^{2}}} . The mathematical form is x1+x2dx\int{\dfrac{x}{1+{{x}^{2}}}dx}.
The main function is y=f(x)y=f\left( x \right) .
We have to find the antiderivative or the integral form of the equation.
We assume 1+x2=z1+{{x}^{2}}=z . We differentiate the equation with respect to xx .
ddx(1+x2)=dzdx 2xdx=dz xdx=12dz   \dfrac{d}{dx}\left( 1+{{x}^{2}} \right)=\dfrac{dz}{dx} \\\ \Rightarrow 2xdx=dz \\\ \Rightarrow xdx=\dfrac{1}{2}dz \;
Now we replace the values in the equation of x1+x2dx\int{\dfrac{x}{1+{{x}^{2}}}dx} and get
x1+x2dx=1z(12dz)=121zdz\int{\dfrac{x}{1+{{x}^{2}}}dx}=\int{\dfrac{1}{z}\left( \dfrac{1}{2}dz \right)}=\dfrac{1}{2}\int{\dfrac{1}{z}dz}
We know the integral form of 1xdx=logx+c\int{\dfrac{1}{x}dx}=\log \left| x \right|+c.
Constant terms get separated from the integral.
Simplifying the differential form,
we get x1+x2dx=121zdz=12logz+c\int{\dfrac{x}{1+{{x}^{2}}}dx}=\dfrac{1}{2}\int{\dfrac{1}{z}dz}=\dfrac{1}{2}\log \left| z \right|+c.
Here cc is another constant.
We replace the value of 1+x2=z1+{{x}^{2}}=z .
We get x1+x2dx=12log(1+x2)+c\int{\dfrac{x}{1+{{x}^{2}}}dx}=\dfrac{1}{2}\log \left( 1+{{x}^{2}} \right)+c
The integral form of the equation x1+x2\dfrac{x}{1+{{x}^{2}}} is 12log(1+x2)+c\dfrac{1}{2}\log \left( 1+{{x}^{2}} \right)+c.
So, the correct answer is “12log(1+x2)+c\dfrac{1}{2}\log \left( 1+{{x}^{2}} \right)+c.”.

Note : The solution of the differential equation is the equation of a logarithmic function. The first order differentiation of 12log(1+x2)+c\dfrac{1}{2}\log \left( 1+{{x}^{2}} \right)+c gives the tangent of the circle for a certain point which is equal to dydx=x1+x2\dfrac{dy}{dx}=\dfrac{x}{1+{{x}^{2}}} .