Solveeit Logo

Question

Question: What is the integral of \(\dfrac{\arctan x}{{{x}^{2}}}\)?...

What is the integral of arctanxx2\dfrac{\arctan x}{{{x}^{2}}}?

Explanation

Solution

We first explain the term dydx\dfrac{dy}{dx} where y=f(x)y=f\left( x \right). We then need to integrate the equationarctanxx2dx\int{\dfrac{\arctan x}{{{x}^{2}}}dx} once to find all the solutions of the differential equation. We know that arctanx=tan1x\arctan x={{\tan }^{-1}}x. We take one constant for the integration. We get the equation of a logarithmic function.

Complete step-by-step solution:
We have to find the integral of the equation arctanxx2\dfrac{\arctan x}{{{x}^{2}}}. The mathematical
form is tan1xx2dx\int{\dfrac{ta{{n}^{-1}}x}{{{x}^{2}}}dx}.
The main function is y=f(x)y=f\left( x \right).
We have to find the anti-derivative or the integral form of the equation.
We assume tan1x=θ{{\tan }^{-1}}x=\theta which gives x=tanθx=\tan \theta . We differentiate the
equation with respect to xx.
d(x)=d(tanθ) dx=sec2θdθ dx=(1+tan2θ)dθ \begin{aligned} & d\left( x \right)=d\left( \tan \theta \right) \\\ & \Rightarrow dx={{\sec }^{2}}\theta d\theta \\\ & \Rightarrow dx=\left( 1+{{\tan }^{2}}\theta \right)d\theta \\\ \end{aligned}
Now we replace the values in the equation of tan1xx2dx\int{\dfrac{ta{{n}^{-1}}x}{{{x}^{2}}}dx} and get
tan1xx2dx=θtan2θsec2θdθ=θcsc2θdθ\int{\dfrac{ta{{n}^{-1}}x}{{{x}^{2}}}dx}=\int{\dfrac{\theta }{{{\tan }^{2}}\theta }{{\sec }^{2}}\theta d\theta }=\int{\theta {{\csc }^{2}}\theta d\theta }
We know the integral form of csc2xdx=cotx+c\int{{{\csc }^{2}}xdx}=-\cot x+c and ddx(xn)=nxn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}.
We use the by parts theorem to find the solution of the integral.
Let’s assume f(x)=g(x)h(x)f\left( x \right)=g\left( x \right)h\left( x \right). We need to find the integration
of f(x)dx=g(x)h(x)dx\int{f\left( x \right)dx}=\int{g\left( x \right)h\left( x \right)dx}.
We take u=g(x),v=h(x)u=g\left( x \right),v=h\left( x \right). This gives f(x)dx=uvdx\int{f\left( x \right)dx}=\int{uvdx}.
The theorem of integration by parts gives uvdx=uvdx(dudxvdx)dx\int{uvdx}=u\int{vdx}-\int{\left( \dfrac{du}{dx}\int{vdx} \right)dx}.
For our integration θcsc2θdθ\int{\theta {{\csc }^{2}}\theta d\theta }, we take u=θ,v=csc2θu=\theta ,v={{\csc }^{2}}\theta .
Simplifying the differential form, we get

& \int{\theta {{\csc }^{2}}\theta d\theta }=\theta \int{{{\csc }^{2}}\theta d\theta }-\int{\left( \dfrac{d\theta }{d\theta }\int{{{\csc }^{2}}\theta d\theta } \right)d\theta } \\\ &\Rightarrow \int{\theta {{\csc }^{2}}\theta d\theta }=-\theta \cot \theta +\int{\left( \cot \theta \right)d\theta } \\\ \end{aligned}$$. We also know that $$\int{\left( \cot \theta \right)d\theta }=\log \left| \sin \theta \right|+c$$. Here $c$ is another constant. We replace the value of ${{\tan }^{-1}}x=\theta $. The integral becomes $$-\theta \cot \theta +\log \left| \sin \theta \right|+c=\dfrac{-{{\tan }^{-1}}x}{x}+\log \left| \dfrac{x}{\sqrt{1+{{x}^{2}}}} \right|+c$$ **The integral form of the equation $\dfrac{\arctan x}{{{x}^{2}}}$ is $$\dfrac{-{{\tan }^{- 1}}x}{x}+\log \left| \dfrac{x}{\sqrt{1+{{x}^{2}}}} \right|+c$$.** **Note:** The solution of the differential equation is the equation of a logarithmic function. The first order differentiation of $$\dfrac{-{{\tan }^{-1}}x}{x}+\log \left| \dfrac{x}{\sqrt{1+{{x}^{2}}}} \right|+c$$ gives the slope for a certain point which is equal to $\dfrac{dy}{dx}=\dfrac{ta{{n}^{-1}}x}{{{x}^{2}}}$.