Solveeit Logo

Question

Question: What is the integral of \(\arctan \left( x \right)\) ?...

What is the integral of arctan(x)\arctan \left( x \right) ?

Explanation

Solution

To integrate arctan(x)\arctan \left( x \right) , we will denote it as tan1(x)\int{ta{{n}^{-1}}\left( x \right)} . We have to rewrite this integral in the form tan1(x)×1\int{ta{{n}^{-1}}\left( x \right)}\times 1 . We have to use integration by parts to integrate this. Integration by parts is given as udv=uvvdu\int{udv}=uv-\int{vdu} . We have to take u=tan1xu={{\tan }^{-1}}x and dv=1dv=1 . Find du and v from this and substitute in the formula for integration. Then we have integrated the second term and simplify if required.

Complete step by step solution:
We have to integrate arctan(x)\arctan \left( x \right) . We can write this as
tan1(x)\int{ta{{n}^{-1}}\left( x \right)}
This is same as tan1(x)×1...(i)\int{ta{{n}^{-1}}\left( x \right)}\times 1...\left( i \right) .
Let us use integration by parts. Integration by parts is given as
udv=uvvdu...(ii)\int{udv}=uv-\int{vdu}...\left( ii \right)
Let us compare the above form to the equation (i). We can see that u=tan1xu={{\tan }^{-1}}x and dv=1dv=1 . We have to find v and du so that we can substitute these in the above formula.
Let us consider dv=1dv=1 . Let us integrate this with respect to x.
v=dv=1dx=x...(iii)v=\int{dv}=\int{1}dx=x...\left( iii \right)
Now, let us consider u=tan1xu={{\tan }^{-1}}x . we have to differentiate u with respect to x.
dudx=ddx(tan1x)=11+x2\dfrac{du}{dx}=\dfrac{d}{dx}\left( {{\tan }^{-1}}x \right)=\dfrac{1}{1+{{x}^{2}}}
Let us find du from the above equation.
du=11+x2dx...(iv)du=\dfrac{1}{1+{{x}^{2}}}dx...\left( iv \right)
Let us substitute the value of u, dv, (iii) and (iv) in equation (i).
tan1x×1=xtan1xx1+x2dx...(v)\Rightarrow \int{{{\tan }^{-1}}x\times 1}=x{{\tan }^{-1}}x-\int{\dfrac{x}{1+{{x}^{2}}}dx}...\left( v \right)
Let us consider t=1+x2t=1+{{x}^{2}} . Now, we have differentiate t with respect to x.
dtdx=ddx(1+x2)\dfrac{dt}{dx}=\dfrac{d}{dx}\left( 1+{{x}^{2}} \right)
We know that derivative of a constant is 0 and ddxxn=nx(n1)\dfrac{d}{dx}{{x}^{n}}=n{{x}^{\left( n-1 \right)}} . Hence, we can write the above equation as
dtdx=ddx(1)+ddx(x2) dtdx=0+2x dt=2xdx \begin{aligned} & \Rightarrow \dfrac{dt}{dx}=\dfrac{d}{dx}\left( 1 \right)+\dfrac{d}{dx}\left( {{x}^{2}} \right) \\\ & \Rightarrow \dfrac{dt}{dx}=0+2x \\\ & \Rightarrow dt=2xdx \\\ \end{aligned}
Let us now, multiply and divide the numerator of second term in equation (v) by 2.
tan1x×1=xtan1x122x1+x2dx\Rightarrow \int{{{\tan }^{-1}}x\times 1}=x{{\tan }^{-1}}x-\dfrac{1}{2}\int{\dfrac{2x}{1+{{x}^{2}}}dx}
Let us substitute the values of t and dt in the above equation.
tan1x×1=xtan1x12dtt\Rightarrow \int{{{\tan }^{-1}}x\times 1}=x{{\tan }^{-1}}x-\dfrac{1}{2}\int{\dfrac{dt}{t}}
We know that dxx=logx+C\int{\dfrac{dx}{x}}=\log \left| x \right|+C . Therefore, we can write the above equation as
tan1x×1=xtan1x12logt+C\Rightarrow \int{{{\tan }^{-1}}x\times 1}=x{{\tan }^{-1}}x-\dfrac{1}{2}\log \left| t \right|+C
Let us substitute the value of t in the above equation.
tan1x×1=xtan1x12log1+x2+C\Rightarrow \int{{{\tan }^{-1}}x\times 1}=x{{\tan }^{-1}}x-\dfrac{1}{2}\log \left| 1+{{x}^{2}} \right|+C
We know that a square function will always be positive. Therefore 1+x21+{{x}^{2}} will always be positive. Hence, we can write the above equation as

& \Rightarrow \int{{{\tan }^{-1}}x\times 1}=x{{\tan }^{-1}}x-\dfrac{1}{2}\log \left( 1+{{x}^{2}} \right)+C \\\ & \Rightarrow \int{{{\tan }^{-1}}x}=x{{\tan }^{-1}}x-\dfrac{1}{2}\log \left( 1+{{x}^{2}} \right)+C \\\ \end{aligned}$$ Hence, the integral of $\arctan \left( x \right)$ is $$x{{\tan }^{-1}}x-\dfrac{1}{2}\log \left( 1+{{x}^{2}} \right)+C$$ . **Note:** We took $\int{ta{{n}^{-1}}\left( x \right)}\times 1$ rather than $\int{1\times ta{{n}^{-1}}\left( x \right)}$ since integration by parts follows ILATE rule. I stands for inverse functions, L stands for logarithmic functions, A stands for algebraic functions, T stands for trigonometric functions and E stands for exponent functions. We can see that in $\int{ta{{n}^{-1}}\left( x \right)}\times 1$ , ${{\tan }^{-1}}x$ is an inverse function and 1 falls under algebraic function.