Question
Question: What is the highest degree in the expansion of \({\left[ {x + {{\left( {{x^3} - 1} \right)}^{\dfrac{...
What is the highest degree in the expansion of x+(x3−1)215+x−(x3−1)215 -
(A)8
(B)7
(C)6
(D)5
Solution
Hint- Here in the expansion of the given function some terms will cancel out with each other.
As we know that according to binomial theorem of expansion, we have
(a+b)n=nC0(a)n+nC1(a)n−1(b)+nC2(a)n−2(b)2+.......+nCn−1(a)(b)n−1+nCn(b)n
and (a−b)n=nC0(a)n−nC1(a)n−1(b)+nC2(a)n−2(b)2−.......+(−1)n−1nCn−1(a)(b)n−1+(−1)nnCn(b)n
where nCr=r!(n−r)!n!
Now consider x+(x3−1)215 and here replace x by a and (x3−1)21 by b, we have
x+(x3−1)215=(a+b)5=5C0(a)5+5C1(a)5−1(b)+5C2(a)5−2(b)2+5C3(a)5−3(b)3+5C4(a)5−4(b)4+5C5(b)5 ⇒x+(x3−1)215=(a+b)5=5C0(a)5+5C1(a)4(b)+5C2(a)3(b)2+5C3(a)2(b)3+5C4(a)(b)4+5C5(b)5 →(1)
Now consider x−(x3−1)215 and here replace x by a and (x3−1)21 by b, we have
x−(x3−1)215=(a−b)5=5C0(a)5−5C1(a)5−1(b)+5C2(a)5−2(b)2−5C3(a)5−3(b)3+5C4(a)5−4(b)4−5C5(b)5 ⇒x−(x3−1)215=(a−b)5=5C0(a)5−5C1(a)4(b)+5C2(a)3(b)2−5C3(a)2(b)3+5C4(a)(b)4−5C5(b)5 →(2)
Now using equations (1) and (2), we have
x+(x3−1)215+x−(x3−1)215=5C0(a)5+5C1(a)4(b)+5C2(a)3(b)2+5C3(a)2(b)3 \+5C4(a)(b)4+5C5(b)5+5C0(a)5−5C1(a)4(b)+5C2(a)3(b)2−5C3(a)2(b)3+5C4(a)(b)4−5C5(b)5 ⇒x+(x3−1)215+x−(x3−1)215=2[5C0(a)5]+2[5C2(a)3(b)2]+2[5C4(a)(b)4] →(3)
Also, 5C0=0!(5−0)!5!=0!5!5!=1[∵0!=1],5C2=2!(5−2)!5!=2.1!3!5.4.3!=25×4=10 5C4=4!(5−4)!5!=4!1!5.4!=15=5
Substituting above values and replacing a by x and b by (x3−1)21, equation (3) becomes
⇒x+(x3−1)215+x−(x3−1)215=2[1×x5]+210×x3×(x3−1)212+25x(x3−1)214 ⇒x+(x3−1)215+x−(x3−1)215=2x5+20x3(x3−1)+10x(x3−1)2=2x5+20x6−20x3+10x(x6+1−2x3) ⇒x+(x3−1)215+x−(x3−1)21=2x5+20x6−20x3+10x7+10x−20x4
Clearly from the above equation, we can see that the highest degree in the expansion of the given function is 7.
Hence, option B is correct.
Note- These types of problems are solved by using binomial theorem of expansion and simplifying the given function and then finally checking the highest degree (highest power of variable x) of the polynomial obtained.