Solveeit Logo

Question

Question: What is the general solution of the differential equation \[\dfrac{{dy}}{{dx}} = \dfrac{{x + 2y - ...

What is the general solution of the differential equation
dydx=x+2y32x+y3?\dfrac{{dy}}{{dx}} = \dfrac{{x + 2y - 3}}{{2x + y - 3}}?

Explanation

Solution

We perform a transformation to remove the constants from the numerator and denominator. First, we will consider the simultaneous equations as x+2y3=0x + 2y - 3 = 0 and 2x+y3=02x + y - 3 = 0 and we will get the values of xx and yy as 11 . After that we will let u=x1u = x - 1 and v=y1v = y - 1 and find dudx\dfrac{{du}}{{dx}} and dvdy\dfrac{{dv}}{{dy}} Then we will substitute the values in the given equation and apply the chain rule and hence we will get a transformed equation in uu and vv .After that we will use the substitution method and substitute v=wuv = wu and find dvdu\dfrac{{dv}}{{du}} and then substitute all the values in the transformed differential equation. After that we will apply integration and solve it using separating the variable method. And after simplification we will get the required result.

Complete step by step answer:
We have given:
dydx=x+2y32x+y3 (A)\dfrac{{dy}}{{dx}} = \dfrac{{x + 2y - 3}}{{2x + y - 3}}{\text{ }} - - - \left( A \right)
First, we will perform a transformation to remove the constants from the numerator and denominator.
So, let us consider the simultaneous equations as:
x+2y3=0 (1)x + 2y - 3 = 0{\text{ }} - - - \left( 1 \right)
2x+y3=0 (2)2x + y - 3 = 0{\text{ }} - - - \left( 2 \right)
Now we will solve equation (1)\left( 1 \right) and (2)\left( 2 \right) using elimination method
So, multiply the equation (1)\left( 1 \right) by 22
Therefore, we get
2x+4y6=0 (3)2x + 4y - 6 = 0{\text{ }} - - - \left( 3 \right)
Now, subtract equation (2)\left( 2 \right) from (3)\left( 3 \right) , we get
3y3=03y - 3 = 0
y=1\Rightarrow y = 1
Now put the value of yy in equation (1)\left( 1 \right) we get
x+23=0x + 2 - 3 = 0
x=1\Rightarrow x = 1
Now as a result we will perform two linear transformations as:
Let
u=x1 (4)u = x - 1{\text{ }} - - - \left( 4 \right)
v=y1 (5)v = y - 1{\text{ }} - - - \left( 5 \right)
So, from equation (4)\left( 4 \right)
dudx=1\dfrac{{du}}{{dx}} = 1 and x=u+1 (6)x = u + 1{\text{ }} - - - \left( 6 \right)
And from equation (5)\left( 5 \right)
dvdy=1\dfrac{{dv}}{{dy}} = 1 and y=v+1 (7)y = v + 1{\text{ }} - - - \left( 7 \right)
Now, substitute the values of xx and yy from equation (6)\left( 6 \right) and (7)\left( 7 \right) in equation (A)\left( A \right)
Therefore, we get
dydx=(u+1)+2(v+1)32(u+1)+(v+1)3 \dfrac{{dy}}{{dx}} = \dfrac{{\left( {u + 1} \right) + 2\left( {v + 1} \right) - 3}}{{2\left( {u + 1} \right) + \left( {v + 1} \right) - 3}}{\text{ }}
dydx=u+1+2v+232u+2+v+13 \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{u + 1 + 2v + 2 - 3}}{{2u + 2 + v + 1 - 3}}{\text{ }}
After simplification, we get
dydx=u+2v2u+v \Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{u + 2v}}{{2u + v}}{\text{ }}
Now using the chain rule, we can write
dydx=dydv×dvdu×dudx\dfrac{{dy}}{{dx}} = \dfrac{{dy}}{{dv}} \times \dfrac{{dv}}{{du}} \times \dfrac{{du}}{{dx}}
dydx=dvdu\Rightarrow \dfrac{{dy}}{{dx}} = \dfrac{{dv}}{{du}}
Thus, we get a transformed equation as,
dvdu=u+2v2u+v (B)\Rightarrow \dfrac{{dv}}{{du}} = \dfrac{{u + 2v}}{{2u + v}}{\text{ }} - - - \left( B \right)
Now we will use substitution method
So, substitute v=wuv = wu
On differentiating w.r.t uu using product rule, we get
dvdu=(w)(dduu)+(dduw)(u)\dfrac{{dv}}{{du}} = \left( w \right)\left( {\dfrac{d}{{du}}u} \right) + \left( {\dfrac{d}{{du}}w} \right)\left( u \right)
dvdu=w+udwdu\Rightarrow \dfrac{{dv}}{{du}} = w + u\dfrac{{dw}}{{du}}
Using this substitution in equation (B)\left( B \right) we get
w+udwdu=u+2wu2u+wuw + u\dfrac{{dw}}{{du}} = \dfrac{{u + 2wu}}{{2u + wu}}
udwdu=u+2wu2u+wuw\Rightarrow u\dfrac{{dw}}{{du}} = \dfrac{{u + 2wu}}{{2u + wu}} - w
On taking L.C.M we get
udwdu=(u+2wu)w(2u+wu)2u+wu\Rightarrow u\dfrac{{dw}}{{du}} = \dfrac{{\left( {u + 2wu} \right) - w\left( {2u + wu} \right)}}{{2u + wu}}
udwdu=u+2wu2uww2u2u+wu\Rightarrow u\dfrac{{dw}}{{du}} = \dfrac{{u + 2wu - 2uw - {w^2}u}}{{2u + wu}}
On cancelling 2wu2wu , we get
udwdu=uw2u2u+wu\Rightarrow u\dfrac{{dw}}{{du}} = \dfrac{{u - {w^2}u}}{{2u + wu}}
Taking common uu from both numerators and denominators we get
udwdu=u(1w2)u(2+w)\Rightarrow u\dfrac{{dw}}{{du}} = \dfrac{{u\left( {1 - {w^2}} \right)}}{{u\left( {2 + w} \right)}}
udwdu=1w22+w\Rightarrow u\dfrac{{dw}}{{du}} = \dfrac{{1 - {w^2}}}{{2 + w}}
This is now a separable differential equation, so we can rearrange and separate the variable.
Therefore, we get
2+w1w2dw=1udu\Rightarrow \dfrac{{2 + w}}{{1 - {w^2}}}dw = \dfrac{1}{u}du
On integration, we get
2+w1w2dw=1udu\Rightarrow \int {\dfrac{{2 + w}}{{1 - {w^2}}}dw} = \int {\dfrac{1}{u}du}
21w2dw+w1w2dw=1udu\Rightarrow \int {\dfrac{2}{{1 - {w^2}}}dw} + \int {\dfrac{w}{{1 - {w^2}}}dw} = \int {\dfrac{1}{u}du}
2(1w)(1+w)dw+w1w2dw=1udu\Rightarrow \int {\dfrac{2}{{\left( {1 - w} \right)\left( {1 + w} \right)}}dw} + \int {\dfrac{w}{{1 - {w^2}}}dw} = \int {\dfrac{1}{u}du}
Now using a partial fraction decomposition, we can write
2(1w)(1+w)=1w+11w1\dfrac{2}{{\left( {1 - w} \right)\left( {1 + w} \right)}} = \dfrac{1}{{w + 1}} - \dfrac{1}{{w - 1}}
Therefore, we get
(1(w+1)+1(w1))dw+w1w2dw=1udu\Rightarrow \int {\left( {\dfrac{1}{{\left( {w + 1} \right)}} + \dfrac{1}{{\left( {w - 1} \right)}}} \right)dw} + \int {\dfrac{w}{{1 - {w^2}}}dw} = \int {\dfrac{1}{u}du}
Now we know that
1xdx=lnx\int {\dfrac{1}{x}dx} = \ln |x| and x1x2dx=12lnx21\int {\dfrac{x}{{1 - {x^2}}}dx} = - \dfrac{1}{2}\ln |{x^2} - 1|
Therefore, we get
lnw+1lnw112lnw21=lnu+lnc\ln |w + 1| - \ln |w - 1| - \dfrac{1}{2}\ln |{w^2} - 1| = \ln |u| + \ln |c|
We know that
lnalnb=lnab\ln |a| - \ln |b| = \ln \dfrac{{|a|}}{{|b|}}
lna+lnb=lnab\ln |a| + \ln |b| = \ln |ab|
alnb=ln(b)aa\ln |b| = \ln {\left( b \right)^a}
So, we get
lnw+1w1lnw21=lnCu\ln \dfrac{{|w + 1|}}{{|w - 1|}} - \ln \sqrt {{w^2} - 1} = \ln |Cu|
ln(w+1w1w21)=lnCu\Rightarrow \ln \left( {\dfrac{{|w + 1|}}{{|w - 1|\sqrt {{w^2} - 1} }}} \right) = \ln |Cu|
w+1w1w21=Cu\Rightarrow \dfrac{{|w + 1|}}{{|w - 1|\sqrt {{w^2} - 1} }} = |Cu|
On squaring both sides, we get
(w+1)2(w1)2(w21)=C2u2\Rightarrow \dfrac{{{{\left( {w + 1} \right)}^2}}}{{{{\left( {w - 1} \right)}^2}\left( {{w^2} - 1} \right)}} = {C^2}{u^2}
(w+1)2(w1)2(w+1)(w1)=C2u2\Rightarrow \dfrac{{{{\left( {w + 1} \right)}^2}}}{{{{\left( {w - 1} \right)}^2}\left( {w + 1} \right)\left( {w - 1} \right)}} = {C^2}{u^2}
On cancelling (w+1)\left( {w + 1} \right) from both numerator and denominator, we get
(w+1)(w1)3=C2u2\Rightarrow \dfrac{{\left( {w + 1} \right)}}{{{{\left( {w - 1} \right)}^3}}} = {C^2}{u^2}
(w+1)(w1)3=C2u2\Rightarrow \dfrac{{\left( {w + 1} \right)}}{{{{\left( {w - 1} \right)}^3}}} = {C^2}{u^2}
(w+1)=au2(w1)3\Rightarrow \left( {w + 1} \right) = a{u^2}{\left( {w - 1} \right)^3} where a=C2a = {C^2}
Now, restoring the earlier ww substitution, using w=vuw = \dfrac{v}{u} we get,
vu+1=au2(vu1)3\dfrac{v}{u} + 1 = a{u^2}{\left( {\dfrac{v}{u} - 1} \right)^3}
Taking L.C.M we get
v+uu=au2(vuu)3\dfrac{{v + u}}{u} = a{u^2}{\left( {\dfrac{{v - u}}{u}} \right)^3}
v+uu=au2(vu)3u3\Rightarrow \dfrac{{v + u}}{u} = a{u^2}\dfrac{{{{\left( {v - u} \right)}^3}}}{{{u^3}}}
v+u=a(vu)3\Rightarrow v + u = a{\left( {v - u} \right)^3}
Now, we will finally restore the earlier substitutions for uu and vv using equation (4)\left( 4 \right) and (5)\left( 5 \right) we get
(y1)+(x1)=a((y1)(x1))3\left( {y - 1} \right) + \left( {x - 1} \right) = a{\left( {\left( {y - 1} \right) - \left( {x - 1} \right)} \right)^3}
y+x2=a(yx)3\Rightarrow y + x - 2 = a{\left( {y - x} \right)^3}
which is the required general solution of the given differential equation.

Note:
First order differential equations that can be written in the form y=F(yx)y' = F\left( {\dfrac{y}{x}} \right) are called Homogeneous differential equations. The given differential equation is also an example of Homogeneous differential equation. So, whenever you get these types of equations, always try to use the concept of substitution method. The basic idea behind this method is to transform and manipulate differential equations and solve them. The key idea is to replace the dependent variable or independent variable by a new variable that is expressed in terms of both of them.