Solveeit Logo

Question

Question: What is the formula for \[\left( {{{\sin }^2}A + {{\sin }^2}B} \right)\]?...

What is the formula for (sin2A+sin2B)\left( {{{\sin }^2}A + {{\sin }^2}B} \right)?

Explanation

Solution

Here in this question, we have to find the formula of given trigonometric function. this can be solve by, using a formula of double angle of cosine trigonometric function i.e., cos2θ=12sin2θ\cos 2\theta = 1 - 2{\sin ^2}\theta , where θ\theta be the angle and by further simplification by the basic arithmetic operation we get the required solutions.

Complete step-by-step answer:
A function of an angle expressed as the ratio of two of the sides of a right triangle that contains that angle; the sine, cosine, tangent, cotangent, secant, or cosecant known as trigonometric function Also called circular function.
Consider the given question:
We have to find the formula of
sin2A+sin2B\Rightarrow \,\,{\sin ^2}A + {\sin ^2}B--------(1)
Let us consider a double angle formula of cosine function i.e., cos2θ=12sin2θ\cos 2\theta = 1 - 2{\sin ^2}\theta , where θ\theta be the angle.
At an angle θ=A\theta = A, then
cos2A=12sin2A\Rightarrow \,\,\cos 2A = 1 - 2{\sin ^2}A
On rearranging, we have
2sin2A=1cos2A\Rightarrow \,\,2{\sin ^2}A = 1 - \cos 2A
Divide both side by 2, then we get
sin2A=1cos2A2\Rightarrow \,\,{\sin ^2}A = \dfrac{{1 - \cos 2A}}{2} ---------(2)
Similarly, at an angle
At an angle θ=B\theta = B, then
cos2B=12sin2B\Rightarrow \,\,\cos 2B = 1 - 2{\sin ^2}B
On rearranging, we have
2sin2B=1cos2B\Rightarrow \,\,2{\sin ^2}B = 1 - \cos 2B
Divide both side by 2, then we get
sin2B=1cos2B2\Rightarrow \,\,{\sin ^2}B = \dfrac{{1 - \cos 2B}}{2} ---------(3)
Substitute equation (2) and (3) in equation (1), we have
sin2A+sin2B=1cos2A2+1cos2B2\Rightarrow \,\,{\sin ^2}A + {\sin ^2}B = \dfrac{{1 - \cos 2A}}{2} + \dfrac{{1 - \cos 2B}}{2}
On simplification, we have
sin2A+sin2B=1cos2A+1cos2B2\Rightarrow \,\,{\sin ^2}A + {\sin ^2}B = \dfrac{{1 - \cos 2A + 1 - \cos 2B}}{2}
sin2A+sin2B=2(cos2A+cos2B)2\Rightarrow \,\,{\sin ^2}A + {\sin ^2}B = \dfrac{{2 - \left( {\cos 2A + \cos 2B} \right)}}{2}
Separate the fraction in RHS, then
sin2A+sin2B=22cos2A+cos2B2\Rightarrow \,\,{\sin ^2}A + {\sin ^2}B = \dfrac{2}{2} - \dfrac{{\cos 2A + \cos 2B}}{2}
sin2A+sin2B=1cos2A+cos2B2\Rightarrow \,\,{\sin ^2}A + {\sin ^2}B = 1 - \dfrac{{\cos 2A + \cos 2B}}{2}
By the transformation trigonometric formula i.e., cosa+cosb=2cos(a+b2)cos(ab2)\cos a + \cos b = 2\cos \left( {\dfrac{{a + b}}{2}} \right) \cdot \cos \left( {\dfrac{{a - b}}{2}} \right), then RHS becomes
sin2A+sin2B=12cos(2A+2B2)cos(2A2B2)2\Rightarrow \,\,{\sin ^2}A + {\sin ^2}B = 1 - \dfrac{{2\cos \left( {\dfrac{{2A + 2B}}{2}} \right) \cdot \cos \left( {\dfrac{{2A - 2B}}{2}} \right)}}{2}
By simplification, we have
sin2A+sin2B=1cos(2A+2B2)cos(2A2B2)\Rightarrow \,\,{\sin ^2}A + {\sin ^2}B = 1 - \cos \left( {\dfrac{{2A + 2B}}{2}} \right) \cdot \cos \left( {\dfrac{{2A - 2B}}{2}} \right)
sin2A+sin2B=1cos(2(A+B)2)cos(2(AB)2)\Rightarrow \,\,{\sin ^2}A + {\sin ^2}B = 1 - \cos \left( {\dfrac{{2\left( {A + B} \right)}}{2}} \right) \cdot \cos \left( {\dfrac{{2\left( {A - B} \right)}}{2}} \right)
Again simplification, we get
sin2A+sin2B=1cos(A+B)cos(AB)\Rightarrow \,\,{\sin ^2}A + {\sin ^2}B = 1 - \cos \left( {A + B} \right) \cdot \cos \left( {A - B} \right)
Hence, the required formula is sin2A+sin2B=1cos(A+B)cos(AB){\sin ^2}A + {\sin ^2}B = 1 - \cos \left( {A + B} \right) \cdot \cos \left( {A - B} \right)

Note: When solving the trigonometry based questions, we have to know the definitions of ratios and always remember the standard angles and formulas are useful for solving certain integration problems where a double formula may make things much simpler to solve. Thus, in math as well as in physics, these formulae are useful to derive many important identities.