Solveeit Logo

Question

Question: What is the expression \(\dfrac{1-{{\tan }^{2}}\left( {{45}^{\circ }}-A \right)}{1+{{\tan }^{2}}\lef...

What is the expression 1tan2(45A)1+tan2(45A)\dfrac{1-{{\tan }^{2}}\left( {{45}^{\circ }}-A \right)}{1+{{\tan }^{2}}\left( {{45}^{\circ }}-A \right)} is equal to
A. sin2A\sin 2A
B. cos2A\cos 2A
C. tan2A\tan 2A
D. cot2A\cot 2A

Explanation

Solution

At first, we replace tan2(45A){{\tan }^{2}}\left( {{45}^{\circ }}-A \right) with sin2(45A)cos2(45A)\dfrac{{{\sin }^{2}}\left( {{45}^{\circ }}-A \right)}{{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)} . Then, we multiply the numerator and denominator by cos2(45A){{\cos }^{2}}\left( {{45}^{\circ }}-A \right) and get cos2(45A)sin2(45A)cos2(45A)+sin2(45A)\dfrac{{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)-{{\sin }^{2}}\left( {{45}^{\circ }}-A \right)}{{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)+{{\sin }^{2}}\left( {{45}^{\circ }}-A \right)} . We then use the formula cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 to replace cos2(45A)+sin2(45A){{\cos }^{2}}\left( {{45}^{\circ }}-A \right)+{{\sin }^{2}}\left( {{45}^{\circ }}-A \right) by 11 . We then use the formula cos2θsin2θ=cos2θ{{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\cos 2\theta to replace cos2(45A)sin2(45A){{\cos }^{2}}\left( {{45}^{\circ }}-A \right)-{{\sin }^{2}}\left( {{45}^{\circ }}-A \right) by cos2(45A)\cos 2\left( {{45}^{\circ }}-A \right) . Rewriting cos2(45A)\cos 2\left( {{45}^{\circ }}-A \right) as cos(902A)\cos \left( {{90}^{\circ }}-2A \right) and using the formula cos(90θ)=sinθ\cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta , we get the final answer.

Complete step by step solution:
The given expression that we have is,
1tan2(45A)1+tan2(45A)\dfrac{1-{{\tan }^{2}}\left( {{45}^{\circ }}-A \right)}{1+{{\tan }^{2}}\left( {{45}^{\circ }}-A \right)}
We know the formula that tanθ=sinθcosθ\tan \theta =\dfrac{\sin \theta }{\cos \theta } . Using this in the above expression, we get,
= \dfrac{1-{{\left\\{ \dfrac{\sin \left( {{45}^{\circ }}-A \right)}{\cos \left( {{45}^{\circ }}-A \right)} \right\\}}^{2}}}{1+{{\left\\{ \dfrac{\sin \left( {{45}^{\circ }}-A \right)}{\cos \left( {{45}^{\circ }}-A \right)} \right\\}}^{2}}}
The above expression can be simplified as,
=1sin2(45A)cos2(45A)1+sin2(45A)cos2(45A)= \dfrac{1-\dfrac{{{\sin }^{2}}\left( {{45}^{\circ }}-A \right)}{{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)}}{1+\dfrac{{{\sin }^{2}}\left( {{45}^{\circ }}-A \right)}{{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)}}
Multiplying the numerator and denominator by cos2(45A){{\cos }^{2}}\left( {{45}^{\circ }}-A \right) , we get,
=cos2(45A)sin2(45A)cos2(45A)+sin2(45A)= \dfrac{{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)-{{\sin }^{2}}\left( {{45}^{\circ }}-A \right)}{{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)+{{\sin }^{2}}\left( {{45}^{\circ }}-A \right)}
Now, we know the formula that cos2θ+sin2θ=1{{\cos }^{2}}\theta +{{\sin }^{2}}\theta =1 . Using this in the above expression, we get,
=cos2(45A)sin2(45A)1= \dfrac{{{\cos }^{2}}\left( {{45}^{\circ }}-A \right)-{{\sin }^{2}}\left( {{45}^{\circ }}-A \right)}{1}
Now, we also know the formula that cos2θsin2θ=cos2θ{{\cos }^{2}}\theta -{{\sin }^{2}}\theta =\cos 2\theta . Using this in the above expression, we get,
=cos2(45A)= \cos 2\left( {{45}^{\circ }}-A \right)
Multiplying 22 inside the bracket, we get,
=cos(902A)= \cos \left( {{90}^{\circ }}-2A \right)
We know the formula that cos(90θ)=sinθ\cos \left( {{90}^{\circ }}-\theta \right)=\sin \theta . Using this in the above expression, we get,
=sin2A= \sin 2A
Thus, we can conclude that the value of the expression 1tan2(45A)1+tan2(45A)\dfrac{1-{{\tan }^{2}}\left( {{45}^{\circ }}-A \right)}{1+{{\tan }^{2}}\left( {{45}^{\circ }}-A \right)} is sin2A\sin 2A which is option A.

Note: Finding the value of the expression by step-by-step solving is necessary and useful in understanding the concepts and also in subjective questions. But for rapid tests like competitive exams, where only the final answer is required, we can check by putting A as 45{{45}^{\circ }} . This gives the expression as,
1tan2(4545)1+tan2(4545)=101+0=1\Rightarrow \dfrac{1-{{\tan }^{2}}\left( {{45}^{\circ }}-{{45}^{\circ }} \right)}{1+{{\tan }^{2}}\left( {{45}^{\circ }}-{{45}^{\circ }} \right)}=\dfrac{1-0}{1+0}=1 .
Now, putting A as 45{{45}^{\circ }} in the first option, we get,
sin(2×45)=sin90=1\sin \left( 2\times {{45}^{\circ }} \right)=\sin {{90}^{\circ }}=1
Putting A as 45{{45}^{\circ }} in the other options, we do not get 11 as the answer. So, the first option is the correct option.