Solveeit Logo

Question

Question: What is the domain and range of:\[y = \sin \left( {{x^2} - 3x + 2} \right)\] Domain =R: Range=\[\l...

What is the domain and range of:y=sin(x23x+2)y = \sin \left( {{x^2} - 3x + 2} \right)
Domain =R: Range=[12,12]\left[ { - \dfrac{1}{2},\dfrac{1}{2}} \right]
Domain=R: Range=[1,1]\left[ { - 1,1} \right]
Domain=R: Range=[0,1]\left[ {0,1} \right]
None of these

Explanation

Solution

Hint : In this question a function is given so we will substitute the value of x in the function and we will check for the domain and range of the function.

Complete step-by-step answer :
y=sin(x23x+2)y = \sin \left( {{x^2} - 3x + 2} \right)
Let the function be
f(x)=sin(x23x+2)f\left( x \right) = \sin \left( {{x^2} - 3x + 2} \right)
Now we substitute the value any of x in the function to find the domain of the function
When x=2
Hence

f(2)=sin(223×2+2) =sin(0) =0   f\left( 2 \right) = \sin \left( {{2^2} - 3 \times 2 + 2} \right) \\\ = \sin (0) \\\ = 0 \;

When x=-4

f(4)=sin((4)23×(4)+2) =sin(16+12+2) =sin(30) =0.5   f\left( { - 4} \right) = \sin \left( {{{\left( { - 4} \right)}^2} - 3 \times \left( { - 4} \right) + 2} \right) \\\ = \sin (16 + 12 + 2) \\\ = \sin \left( {30} \right) \\\ = 0.5 \;

When x=πx = \pi

f(π)=sin(π23×(π)+2) =sin(2.44) =0.042   f\left( \pi \right) = \sin \left( {{\pi ^2} - 3 \times \left( \pi \right) + 2} \right) \\\ = \sin (2.44) \\\ = 0.042 \;

Now from the above calculation we can say whenever a real value of x is substituted in the function f(x)=sin(x23x+2)f\left( x \right) = \sin \left( {{x^2} - 3x + 2} \right), it gives a real number
Hence we can say the domain of the function y=sin(x23x+2)y = \sin \left( {{x^2} - 3x + 2} \right) is real number R.
Now in the function y=sin(x23x+2)y = \sin \left( {{x^2} - 3x + 2} \right), the function is a sine function and the range of the sine function is [1,1]\left[ { - 1,1} \right].
1sinθ1- 1 \leqslant \sin \theta \leqslant 1
Now in the function y=sin(x23x+2)y = \sin \left( {{x^2} - 3x + 2} \right)as already observed above if we substitute any real number in the function it gives a real number which lies in the range [1,1]\left[ { - 1,1} \right].
Hence we can say the range of the function y=sin(x23x+2)y = \sin \left( {{x^2} - 3x + 2} \right)is [1,1]\left[ { - 1,1} \right].
Therefore the domain of the function y=sin(x23x+2)y = \sin \left( {{x^2} - 3x + 2} \right) is R and the range is[1,1]\left[ { - 1,1} \right].
So, the correct answer is “Option C”.

Note : Students must note that the domain is the set of all possible values of x for which the function f(x) will be defined and the range refers to the possible range of values that the function f(x) can attain for those values of x which are in the domain of f(x).