Solveeit Logo

Question

Question: What is the domain and range of \[\sin x+\cos x\]?...

What is the domain and range of sinx+cosx\sin x+\cos x?

Explanation

Solution

This type of question depends on the basic concept of trigonometry. We know that sinx\sin x and cosx\cos x are defined for all real values of xx. Also the absolute value of both the functions can never be greater than 1 as 1sinx1&1cosx1-1\le \sin x\le 1\And -1\le \cos x\le 1. Along with this in this question we use sin(A+B)=sinAcosB+cosAsinB\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B and sin(π4)=cos(π4)=12\sin \left( \dfrac{\pi }{4} \right)=\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}}.

Complete step by step solution:
Now, we have to find domain and range of sinx+cosx\sin x+\cos x
For this consider,
sinx+cosx\Rightarrow \sin x+\cos x
Now, multiply and divide by 2\sqrt{2} we get,
sinx+cosx=2(sinx+cosx2)\Rightarrow \sin x+\cos x=\sqrt{2}\left( \dfrac{\sin x+\cos x}{\sqrt{2}} \right)
By separating the denominator we can write,
sinx+cosx=2(12sinx+12cosx)\Rightarrow \sin x+\cos x=\sqrt{2}\left( \dfrac{1}{\sqrt{2}}\sin x+\dfrac{1}{\sqrt{2}}\cos x \right)
We know that, sin(π4)=cos(π4)=12\sin \left( \dfrac{\pi }{4} \right)=\cos \left( \dfrac{\pi }{4} \right)=\dfrac{1}{\sqrt{2}} hence,
sinx+cosx=2(sinxcosπ4+cosxsinπ4)\Rightarrow \sin x+\cos x=\sqrt{2}\left( \sin x\cos \dfrac{\pi }{4}+\cos x\sin \dfrac{\pi }{4} \right)
Also, we know that, sin(A+B)=sinAcosB+cosAsinB\sin \left( A+B \right)=\sin A\cos B+\cos A\sin B
sinx+cosx=2sin(x+π4)\Rightarrow \sin x+\cos x=\sqrt{2}\sin \left( x+\dfrac{\pi }{4} \right)
Hence, we rewrite the given function sinx+cosx\sin x+\cos x as 2sin(x+π4)\sqrt{2}\sin \left( x+\dfrac{\pi }{4} \right).
As we know that the function sinx\sin x is defined for all real values of xx. Thus the domain of sinx\sin x is:
x(,)\Rightarrow x\in \left( -\infty ,\infty \right)
In similar manner we can say that the function sinx+cosx=2sin(x+π4)\sin x+\cos x=\sqrt{2}\sin \left( x+\dfrac{\pi }{4} \right) is also defined for all values of (x+π4)\left( x+\dfrac{\pi }{4} \right) and hence for all values of xx. Thus we can say that the domain of the function sinx+cosx=2sin(x+π4)\sin x+\cos x=\sqrt{2}\sin \left( x+\dfrac{\pi }{4} \right) is:
(x+π4)(,)x(,)\Rightarrow \left( x+\dfrac{\pi }{4} \right)\in \left( -\infty ,\infty \right)\to x\in \left( -\infty ,\infty \right)
Also we know that the absolute value of sinx\sin x can never be greater than 1. So we have:

& \Rightarrow \left| \sin x \right|\le 1 \\\ & \Rightarrow -1\le \sin x\le 1 \\\ & \Rightarrow -1\le \sin \left( x+\dfrac{\pi }{4} \right)\le 1 \\\ & \Rightarrow \sqrt{2}\times \left( -1 \right)\le \sqrt{2}\sin \left( x+\dfrac{\pi }{4} \right)\le \sqrt{2}\times 1 \\\ & \Rightarrow -\sqrt{2}\le \sqrt{2}\sin \left( x+\dfrac{\pi }{4} \right)\le \sqrt{2} \\\ \end{aligned}$$ Thus, the value of the function $$\sin x+\cos x=\sqrt{2}\sin \left( x+\dfrac{\pi }{4} \right)$$ lies from $$-\sqrt{2}$$ to $$\sqrt{2}$$. Hence, the range of $$\sin x+\cos x=\sqrt{2}\sin \left( x+\dfrac{\pi }{4} \right)$$ is: $$\Rightarrow \sqrt{2}\sin \left( x+\dfrac{\pi }{4} \right)\in \left[ -\sqrt{2},\sqrt{2} \right]$$ $$\Rightarrow \sin x+\cos x\in \left[ -\sqrt{2},\sqrt{2} \right]$$ Hence, the domain and range of $$\sin x+\cos x$$ $$\begin{aligned} & \Rightarrow Domain:\left( x+\dfrac{\pi }{4} \right)\in \left( -\infty ,\infty \right)\to x\in \left( -\infty ,\infty \right) \\\ & \Rightarrow Range:\left[ -\sqrt{2},\sqrt{2} \right] \\\ \end{aligned}$$ **Note:** In this type of question students may make a conversion of $$\sin x+\cos x$$ into $$\sqrt{2}\sin \left( x+\dfrac{\pi }{4} \right)$$. Students may consider the function as it is and try to find out the domain and range or one may directly divide by $$\sqrt{2}$$. Students have to take care during multiplication and division by $$\sqrt{2}$$ as well as in conversion also.