Solveeit Logo

Question

Question: What is the derivative of \[y={{\left( \sqrt{x} \right)}^{x}}\]?...

What is the derivative of y=(x)xy={{\left( \sqrt{x} \right)}^{x}}?

Explanation

Solution

In this question we have to use the concepts of derivatives of functions of a function along with the concept of logarithm. Here we have to use the rules of logarithm such as ln(am)=mln(a)\ln \left( {{a}^{m}} \right)=m\ln \left( a \right). Also we have to use the product rule of derivatives that is ddx(uv)=udvdx+vdudx\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}.

Complete step by step solution:
Now, we have to find the derivative of y=(x)xy={{\left( \sqrt{x} \right)}^{x}}
For this consider,
y=(x)x\Rightarrow y={{\left( \sqrt{x} \right)}^{x}}
Let us apply natural log on both sides
lny=ln[(x)x]\Rightarrow \ln y=\ln \left[ {{\left( \sqrt{x} \right)}^{x}} \right]
As we know that, ln(am)=mln(a)\ln \left( {{a}^{m}} \right)=m\ln \left( a \right) we get,
lny=x[ln(x)]\Rightarrow \ln y=x\left[ \ln \left( \sqrt{x} \right) \right]
Now we take derivatives on both sides,
ddx(lny)=ddxx[ln(x)]\Rightarrow \dfrac{d}{dx}\left( \ln y \right)=\dfrac{d}{dx}x\left[ \ln \left( \sqrt{x} \right) \right]
We know that ddx(lnx)=1x\dfrac{d}{dx}\left( \ln x \right)=\dfrac{1}{x} and product rule of derivatives that is ddx(uv)=udvdx+vdudx\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}
1ydydx=xddx[ln(x)]+ln(x)ddx(x)\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=x\dfrac{d}{dx}\left[ \ln \left( \sqrt{x} \right) \right]+\ln \left( \sqrt{x} \right)\dfrac{d}{dx}\left( x \right)
1ydydx=x1xddxx+ln(x)1\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=x\dfrac{1}{\sqrt{x}}\dfrac{d}{dx}\sqrt{x}+\ln \left( \sqrt{x} \right)\cdot 1
As we know the derivative of x\sqrt{x} is equal to 12x\dfrac{1}{2\sqrt{x}} that is ddxx=12x\dfrac{d}{dx}\sqrt{x}=\dfrac{1}{2\sqrt{x}}
1ydydx=xx12x+ln(x)\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{x}{\sqrt{x}}\cdot \dfrac{1}{2\sqrt{x}}+\ln \left( \sqrt{x} \right)
As xx=(x)2=(x12)2=x\sqrt{x}\cdot \sqrt{x}={{\left( \sqrt{x} \right)}^{2}}={{\left( {{x}^{\dfrac{1}{2}}} \right)}^{2}}=x we can write,
1ydydx=x2x+ln(x)\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{x}{2x}+\ln \left( \sqrt{x} \right)
1ydydx=12+ln(x)\Rightarrow \dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{1}{2}+\ln \left( \sqrt{x} \right)
By taking y on right hand side we get,
dydx=y[12+ln(x)]\Rightarrow \dfrac{dy}{dx}=y\left[ \dfrac{1}{2}+\ln \left( \sqrt{x} \right) \right]
By substituting the value of y we can write,
dydx=(x)x[12+ln(x)]\Rightarrow \dfrac{dy}{dx}={{\left( \sqrt{x} \right)}^{x}}\left[ \dfrac{1}{2}+\ln \left( \sqrt{x} \right) \right]
As we know that, x\sqrt{x} can be expressed as x12{{x}^{\dfrac{1}{2}}}
dydx=(x)x[12+ln(x12)]\Rightarrow \dfrac{dy}{dx}={{\left( \sqrt{x} \right)}^{x}}\left[ \dfrac{1}{2}+\ln \left( {{x}^{\dfrac{1}{2}}} \right) \right]
By using ln(am)=mln(a)\ln \left( {{a}^{m}} \right)=m\ln \left( a \right) we can write
dydx=(x)x[12+12ln(x)]\Rightarrow \dfrac{dy}{dx}={{\left( \sqrt{x} \right)}^{x}}\left[ \dfrac{1}{2}+\dfrac{1}{2}\ln \left( x \right) \right]
dydx=(x)x(12)(1+(lnx))\Rightarrow \dfrac{dy}{dx}={{\left( \sqrt{x} \right)}^{x}}\left( \dfrac{1}{2} \right)\left( 1+\left( \ln x \right) \right)
Hence, the derivative of y=(x)xy={{\left( \sqrt{x} \right)}^{x}} is given by dydx=(x)x(12)(1+(lnx))\dfrac{dy}{dx}={{\left( \sqrt{x} \right)}^{x}}\left( \dfrac{1}{2} \right)\left( 1+\left( \ln x \right) \right)

Note: In this question one of the students may solve as follows:
y=(x)x\Rightarrow y={{\left( \sqrt{x} \right)}^{x}}
As we know that, x\sqrt{x} can be expressed as x12{{x}^{\dfrac{1}{2}}}
y=(x12)x\Rightarrow y={{\left( {{x}^{\dfrac{1}{2}}} \right)}^{x}}
Now by using (am)n=amn{{\left( {{a}^{m}} \right)}^{n}}={{a}^{mn}} we can write
y=xx2\Rightarrow y={{x}^{\dfrac{x}{2}}}
Now applying natural log on both sides we get
lny=x2lnx\Rightarrow \ln y=\dfrac{x}{2}\ln x
And now by taking exponential of both sides we can write
y=ex2lnx\Rightarrow y={{e}^{\dfrac{x}{2}\ln x}}
Now we differentiate both sides
dydx=ex2lnxddx(x2lnx)\Rightarrow \dfrac{dy}{dx}={{e}^{\dfrac{x}{2}\ln x}}\dfrac{d}{dx}\left( \dfrac{x}{2}\ln x \right)
To find the derivative of the bracket we have to use product rule ddx(uv)=udvdx+vdudx\dfrac{d}{dx}\left( u\cdot v \right)=u\dfrac{dv}{dx}+v\dfrac{du}{dx}
dydx=ex2lnx(x2ddx(lnx)+(lnx)ddx(x2))\Rightarrow \dfrac{dy}{dx}={{e}^{\dfrac{x}{2}\ln x}}\left( \dfrac{x}{2}\dfrac{d}{dx}\left( \ln x \right)+\left( \ln x \right)\dfrac{d}{dx}\left( \dfrac{x}{2} \right) \right)
dydx=ex2lnx(x21x+(lnx)(12))\Rightarrow \dfrac{dy}{dx}={{e}^{\dfrac{x}{2}\ln x}}\left( \dfrac{x}{2}\dfrac{1}{x}+\left( \ln x \right)\left( \dfrac{1}{2} \right) \right)
dydx=ex2lnx(12+(lnx)(12))\Rightarrow \dfrac{dy}{dx}={{e}^{\dfrac{x}{2}\ln x}}\left( \dfrac{1}{2}+\left( \ln x \right)\left( \dfrac{1}{2} \right) \right)
dydx=ex2lnx(12)(1+(lnx))\Rightarrow \dfrac{dy}{dx}={{e}^{\dfrac{x}{2}\ln x}}\left( \dfrac{1}{2} \right)\left( 1+\left( \ln x \right) \right)
Now, as we have y=ex2lnxy={{e}^{\dfrac{x}{2}\ln x}} and y=(x)xy={{\left( \sqrt{x} \right)}^{x}}, we can replace ex2lnx{{e}^{\dfrac{x}{2}\ln x}} by (x)x{{\left( \sqrt{x} \right)}^{x}} and hence we can write
dydx=(x)x(12)(1+(lnx))\Rightarrow \dfrac{dy}{dx}={{\left( \sqrt{x} \right)}^{x}}\left( \dfrac{1}{2} \right)\left( 1+\left( \ln x \right) \right)
Hence the derivative of y=(x)xy={{\left( \sqrt{x} \right)}^{x}} is given by dydx=(x)x(12)(1+(lnx))\dfrac{dy}{dx}={{\left( \sqrt{x} \right)}^{x}}\left( \dfrac{1}{2} \right)\left( 1+\left( \ln x \right) \right)