Solveeit Logo

Question

Question: What is the derivative of the function, \(f(x) = {e^{\tan x}} + \ln (\sec x) - {e^{\ln x}}\) at \(...

What is the derivative of the function,
f(x)=etanx+ln(secx)elnxf(x) = {e^{\tan x}} + \ln (\sec x) - {e^{\ln x}} at x=π4x = \dfrac{\pi }{4}
(A) e/2
(B) e
(C) 2e
(D) 4e

Explanation

Solution

Hint: Differentiation of eu{e^u} with respect to x is eu.dudx{e^u}.\dfrac{{du}}{{dx}} and that of ln(u) with respect to x is 1u.dudx\dfrac{1}{u}.\dfrac{{du}}{{dx}}. Use these rules to differentiate the above function with respect to x and then put x=π4x = \dfrac{\pi }{4} to find the required value.

Complete step by step answer:
From the given question,
f(x)=etanx+ln(secx)elnx\Rightarrow f(x) = {e^{\tan x}} + \ln (\sec x) - {e^{\ln x}}
We know that elnx=x{e^{\ln x}} = x. So using this, we’ll get:
f(x)=etanx+ln(secx)x\Rightarrow f(x) = {e^{\tan x}} + \ln (\sec x) - x
Differentiating it with respect to x, we’ll get:
f(x)=ddxetanx+ddxln(secx)ddxx\Rightarrow f'(x) = \dfrac{d}{{dx}}{e^{\tan x}} + \dfrac{d}{{dx}}\ln (\sec x) - \dfrac{d}{{dx}}x
We know that ddxeu=eu.dudx\dfrac{d}{{dx}}{e^u} = {e^u}.\dfrac{{du}}{{dx}}, ddxlnu=1u.dudx\dfrac{d}{{dx}}\ln u = \dfrac{1}{u}.\dfrac{{du}}{{dx}} and ddxx=1\dfrac{d}{{dx}}x = 1. Using these results, we’ll get:
f(x)=etanx.ddxtanx+1secx.ddxsecx1\Rightarrow f'(x) = {e^{\tan x}}.\dfrac{d}{{dx}}\tan x + \dfrac{1}{{\sec x}}.\dfrac{d}{{dx}}\sec x - 1
Further, we know that ddxtanx=sec2x\dfrac{d}{{dx}}\tan x = {\sec ^2}x and ddxsecx=secxtanx\dfrac{d}{{dx}}\sec x = \sec x\tan x. Using these formulas, we’ll get:
f(x)=etanx.sec2x+1secxsecxtanx1 f(x)=etanx.sec2x+tanx1  \Rightarrow f'(x) = {e^{\tan x}}.{\sec ^2}x + \dfrac{1}{{\sec x}}\sec x\tan x - 1 \\\ \Rightarrow f'(x) = {e^{\tan x}}.{\sec ^2}x + \tan x - 1 \\\
Now putting x=π4x = \dfrac{\pi }{4}, we’ll get:
f(π4)=etanπ4.sec2π4+tanπ41\Rightarrow f'\left( {\dfrac{\pi }{4}} \right) = {e^{\tan \dfrac{\pi }{4}}}.{\sec ^2}\dfrac{\pi }{4} + \tan \dfrac{\pi }{4} - 1
We also know that tanπ4=1\tan \dfrac{\pi }{4} = 1 and secπ4=2\sec \dfrac{\pi }{4} = \sqrt 2 . Putting these values, we’ll get:
f(π4)=e1.(2)2+11 f(π4)=2e  \Rightarrow f'\left( {\dfrac{\pi }{4}} \right) = {e^1}.{\left( {\sqrt 2 } \right)^2} + 1 - 1 \\\ \Rightarrow f'\left( {\dfrac{\pi }{4}} \right) = 2e \\\

Therefore (C) is the correct option.

Note: We have used the chain rule of differentiation in the problem. According to this rule, if a function is such that y=f(g(x))y = f\left( {g\left( x \right)} \right), then its differentiation is:
dydx=f(g(x)).g(x)\Rightarrow \dfrac{{dy}}{{dx}} = f'\left( {g\left( x \right)} \right).g'\left( x \right)
If we have to differentiate a composite function we have to use this method.