Solveeit Logo

Question

Question: What is the derivative of \[{{\tan }^{3}}\left( {{x}^{4}} \right)\] ?...

What is the derivative of tan3(x4){{\tan }^{3}}\left( {{x}^{4}} \right) ?

Explanation

Solution

In this type of question students have to use the basic concept of derivatives. The given function is a trigonometric function of a function of x. So students have to apply the formula of derivative of a function of a function. Also they have to use the derivative of tanx\tan x and derivative of xn{{x}^{n}} . Hence, the student should use ddx(xn)=nxn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}}, ddx(tanx)=sec2x\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x and ddx(f(g(x)))=f(g(x))ddx(g(x))\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)=f'\left( g\left( x \right) \right)\dfrac{d}{dx}\left( g\left( x \right) \right) . Finally rearrange all the terms and write your result.

Complete step-by-step answer:
Now, here we have to find out derivative of tan3(x4){{\tan }^{3}}\left( {{x}^{4}} \right)so consider, ddx(tan3(x4))\dfrac{d}{dx}\left( {{\tan }^{3}}\left( {{x}^{4}} \right) \right)
By Applying, the derivative of function of a function that is ddx(f(g(x)))=f(g(x))ddx(g(x))\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)=f'\left( g\left( x \right) \right)\dfrac{d}{dx}\left( g\left( x \right) \right) and ddx(xn)=nxn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}} We get,
ddx(tan3(x4))=3tan2(x4)ddx(tan(x4))\Rightarrow \dfrac{d}{dx}\left( {{\tan }^{3}}\left( {{x}^{4}} \right) \right)=3{{\tan }^{2}}\left( {{x}^{4}} \right)\dfrac{d}{dx}\left( \tan \left( {{x}^{4}} \right) \right)
Now, again we apply ddx(f(g(x)))=f(g(x))ddx(g(x))\dfrac{d}{dx}\left( f\left( g\left( x \right) \right) \right)=f'\left( g\left( x \right) \right)\dfrac{d}{dx}\left( g\left( x \right) \right) along with ddx(tanx)=sec2x\dfrac{d}{dx}\left( \tan x \right)={{\sec }^{2}}x so we get,
ddx(tan3(x4))=3tan2(x4)[sec2(x4)ddx(x4)]\Rightarrow \dfrac{d}{dx}\left( {{\tan }^{3}}\left( {{x}^{4}} \right) \right)=3{{\tan }^{2}}\left( {{x}^{4}} \right)\left[ {{\sec }^{2}}\left( {{x}^{4}} \right)\dfrac{d}{dx}\left( {{x}^{4}} \right) \right]
Finally by using ddx(xn)=nxn1\dfrac{d}{dx}\left( {{x}^{n}} \right)=n{{x}^{n-1}} we can write,
ddx(tan3(x4))=3tan2(x4)[sec2(x4)4x3]\Rightarrow \dfrac{d}{dx}\left( {{\tan }^{3}}\left( {{x}^{4}} \right) \right)=3{{\tan }^{2}}\left( {{x}^{4}} \right)\left[ {{\sec }^{2}}\left( {{x}^{4}} \right)4{{x}^{3}} \right]
Now, combine the constants so we get,
ddx(tan3(x4))=12tan2(x4)[sec2(x4)x3]\Rightarrow \dfrac{d}{dx}\left( {{\tan }^{3}}\left( {{x}^{4}} \right) \right)=12{{\tan }^{2}}\left( {{x}^{4}} \right)\left[ {{\sec }^{2}}\left( {{x}^{4}} \right){{x}^{3}} \right]
By rearranging the terms present we can write,
ddx(tan3(x4))=12x3tan2(x4)sec2(x4)\Rightarrow \dfrac{d}{dx}\left( {{\tan }^{3}}\left( {{x}^{4}} \right) \right)=12{{x}^{3}}{{\tan }^{2}}\left( {{x}^{4}} \right){{\sec }^{2}}\left( {{x}^{4}} \right)
This is the final answer of the derivative.
Hence, the derivative of tan3(x4){{\tan }^{3}}\left( {{x}^{4}} \right) is 12x3tan2(x4)sec2(x4)12{{x}^{3}}{{\tan }^{2}}\left( {{x}^{4}} \right){{\sec }^{2}}\left( {{x}^{4}} \right)

Note: In this type of question student may make mistake when they find the derivative of (tan3(x4))\left( {{\tan }^{3}}\left( {{x}^{4}} \right) \right) one may write ddx(tan3(x4))=3tan2(x4)ddx(x4)\dfrac{d}{dx}\left( {{\tan }^{3}}\left( {{x}^{4}} \right) \right)=3{{\tan }^{2}}\left( {{x}^{4}} \right)\dfrac{d}{dx}\left( {{x}^{4}} \right) and forgot to take derivative of tan(x4)\tan \left( {{x}^{4}} \right) . Also student may find the derivative of (tan3(x4))\left( {{\tan }^{3}}\left( {{x}^{4}} \right) \right) and they write the final answer as ddx(tan3(x4))=3tan2(x4)[sec2(x4)]\dfrac{d}{dx}\left( {{\tan }^{3}}\left( {{x}^{4}} \right) \right)=3{{\tan }^{2}}\left( {{x}^{4}} \right)\left[ {{\sec }^{2}}\left( {{x}^{4}} \right) \right] which is not correct as derivative of (x4)\left( {{x}^{4}} \right) is missing. So that when students use derivatives of a function they have to be more careful. Also, when we write a final answer by rearranging the terms make sure that in the final answer all terms are present or not.